MECHANICAL PROPERTIES OF SOLIDS

1.	The value of Poisson's ra	tio lies between		
	a) $-1 \text{ to } \frac{1}{2}$	b) $-\frac{3}{4}$ to $-\frac{1}{2}$	c) $-\frac{1}{2}$ to 1	d) 1 to 2
2.	A 5 metre long wire is fix	ked to the ceiling. A weight	of $10 kg$ is hung at the low	er end and is 1 <i>metre</i> above
	the floor. The wire was e	longated by 1 mm. The ene	rgy stored in the wire due	to stretching is
	a) Zero	b) 0.05 <i>joule</i>	c) 100 joule	d) 500 <i>joule</i>
3.	If a spring is extended to	length $\it l$, then according to	Hooke's law	
	a) $F = kl$	b) $F = \frac{k}{l}$	c) $F = k^2 l$	$d) F = \frac{k^2}{l}$
4.	If in a wire of Young's mounit volume will be	odulus <i>Y</i> , longitudinal straii	a X is produced then the po	tential energy stored in its
	a) $0.5 YX^2$	b) $0.5 Y^2 X$	c) 2 YX ²	d) YX^2
5.			ion 1 mm ² is tied rigidly at	. 그러워 내 사람들이
1000			C. Coefficient of linear expa	
	1. T. C.	is $2.0 \times 10^{11} \text{ Nm}^{-2}$; the te	0.50	
	a) $2.2 \times 10^6 \mathrm{N}$	b) 16 N	c) 8 N	d) 44 N
	and the second of the second o			0 0 0
6.			force Fapplied to the other e material of length 2L and	ş - 5
	a) <i>l</i>	b) 2 <i>l</i>	c) 4 l	d) $\frac{l}{2}$
7.	A and B are two wires. The stress on B is	he radius of A is twice that	of B. They are stretched by	the same load. Then the
	a) Equal to that on A	b) Four times that on A		
8.	100 N. Young's modulus	of material of the wire is	$10^{-6}m^2$ is stretched by 0.1	
	a) $10^{12}N/m^2$	b) $10^2 N/m^2$	c) $10^{10}N/m^2$	
9.			The length changes to L_1 and	d L_2 when masses M_1 and
	- 100-10 0 - 100 100 100 100 100 100 100 100 100 	ctively from its free end. Th		1 M 1 M
	a) $\frac{L_1 + L_2}{2}$	b) $\sqrt{L_1L_2}$	c) $\frac{L_1M_2 + L_2M_1}{M_1 + M_2}$	d) $\frac{L_1 M_2 - L_2 M_1}{M_1 + M_2}$
10	4		12	
10.			n is 1.6 and for hydrogen is	
	argon at pressure P is E .		ogen will also be equal to E	at the pressure
	a) <i>P</i>	b) $\frac{8}{7}P$	c) $\frac{7}{8}P$	d) 1.4 <i>P</i>
11.	Two wires of same mate	erial and radius have their	lengths in ratio 1:2. If these	wires are stretched by the
	same force, the strain pro	oduced in the two wires wi	ll be in the ratio	
	a) 2:1	b) 1:1	c) 1:2	d) 1:4
12.	A wire extends by 1 mm	when a force is applied. Do	uble the force is applied to	another wire of same
	material and length but h	nalf the radius of cross-sect	ion. The elongation of the v	vire in mm will be
	a) 8	b) 4	c) 2	d) 1

13.		values of Poisson's ratio fo		0420 NO 10 N
11	a) $-\infty$ to $+\infty$	b) 0 to 1	c) -∞ to 1	d) 0 to 0.5
14.		riffur - na magnifus na airtika na katalan kan hiji na man katalan katalan katalan katalan katalan katalan kat	y an external pressure p. B	
			be and α is the coefficient of	sure was applied? (Given K
	p	2		5 5
	a) $\frac{\dot{\kappa}}{K\alpha}$	b) $\frac{p}{3K\alpha}$	c) $\frac{3\pi\alpha}{n}$	d) $\frac{K}{3n}$
15	When a proceure of 100 a	~	spherical ball, then its volu	~P
15.	The contract of	rial of the rubber in dyne/		me reduces to 0.01%. The
	a) 10×10^{12}	b) 100×10^{12}	c) 1×10^{12}	d) 20×10^{12}
16.			wire of the same material i	
	are stretched, then work			
	a) $W_2 = 2W_1^2$		c) $W_2 = W_1$	d) $W_2 = 0.5 W_2$
4.7	100 years			
17.			tional change in the object'	s volume $\left(\frac{\Delta v}{V}\right)$ and its bulk
	modulus (B) are related a		12.00	999
	a) $\frac{\Delta V}{V} \propto B$	b) $\frac{\Delta V}{V} \propto \frac{1}{R}$	c) $\frac{\Delta V}{V} \propto B^2$	d) $\frac{\Delta V}{V} \propto B^{-2}$
18.		, D	V ave their radii r_1 and r_2 res	· · · · · · · · · · · · · · · · · · ·
10.		크리 : - (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ple applied at the other end	판매 전쟁 경로 보고 있다면 1.5분 시간 경상 시간
		he angle of twist at the end	∰ gameng pranging injinkan kelamatan an anamat kanang manah atau an an anamat kan an an an an an an an an an a Manah kalamat kan an a	,,
	2/		2	m ²
	a) $\frac{r_2^4}{r_1^4}$	b) $\frac{r_1^4}{r_4^4}$	c) $\frac{r_2^2}{r^2}$	d) $\frac{r_1^2}{r_2^2}$
		12	11	/2
19.	Young's modulus of the w	ire depends on	LVD: CH	
	a) Length of the wire		b) Diameter of the wire	
20	c) Material of the wire	ung'e modulue ie n timoe t	 d) Mass hanging from the he rigidity modulus, where 	
20.	a) 2	b) 3	c) 4	d) 5
21.		per unit volume in a streto		u) 0
	1			
	a) $\frac{1}{2}$ (Young modulus) (Str	ain)-	b) $\frac{1}{2}$ (Stress) (Strain) ²	
	c) $\frac{1}{2} \frac{\text{Stress}}{\text{Strain}}$		d) $\frac{1}{2}$ (Young modulus) (Str	ess)
22		nath 1 m and cross-section		ulus of 10^{12} dyne cm ⁻² . We
22.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	must be pulled to produce a	and the supplication of the contract of the second of the contract of the cont
	equal to		Promise promise	
	a) 10^9 dyne	b) 10 ⁸ dyne	c) 10 ⁶ dyne	d) 10 ¹⁷ dyne
	(1.5)		95 (51) 939 - 1939 (50)	
23.	트로 마시 시간 시간 시간 경기를 구입되었다. 그리고 시간 시간 프로그램이 있는 경기에 가지를 받았다. 그리고 시간	neggeren stere s amt er hanner men eren bevanner och er han state i mannen stere samt. I der	clamped. The lower end is t	twisted through and angle
	of 45°. The angle of shear			
	a) ^{0.09°}	b) 0.9°	c) 9°	d) 90°
24.				$\frac{\Delta V}{V}$ of water at the bottom
			ter = $2.2 \times 10^9 \text{ Nm}^{-2}$ and g	
	a) 0.82%	b) 0.91%	c) 1.36%	d) 1.24%
25.	~~ [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	- 15 M - 18 M - 19 M -	rom it. If the wire goes over	r a pulley and two weights
		o ends, the elongation of t	c) Zero	1
	a) <i>l</i>	b) 2 <i>l</i>	-,	d) $\frac{\iota}{2}$
				6물

26.	by 0.1% is	$2 \times 10^9 \text{ Nm}^{-2}$. The change	e in pressure required to in	crease the density of water
	a) $^{2} \times 10^{9} \text{Nm}^{-2}$	b) $2 \times 10^8 \text{ Nm}^{-2}$	c) $2 \times 10^6 \text{ Nm}^{-2}$	d) $2 \times 10^4 \text{ Nm}^{-2}$
27.	If longitudinal strain for a	wire is 0.03 and its Poisso	n's ratio is 0.5, then its late	ral strain is
	a) 0.003	b) 0.0075	c) 0.015	d) 0.4
28.	The possible value of Pois	sson's ratio is		
	a) 1	b) 0.9	c) 0.8	d) 0.4
29.				cular disc of radius $R(R>r)$.
			Y, the force with which the $V(R-r)$	
	a) $\frac{AYR}{r}$	b) $\frac{AY(R-r)}{r}$	c) $\frac{r(R-r)}{Ar}$	d) $\frac{YR}{AR}$
30.		oung's modulus for the map E to F to L	lly and supports a weight a terial of the wire is <i>E</i> , the extends of the wire is <i>E</i> , the wire is a wire in the wire is a wind of the wire is a wire in the wire in the wire is a wire in the wire in the wire is a wire in the wire in the wire in the wire in the wire is a wire in the wir	
	a) if only 3 is correct	b) if 1, 2 are correct	c) if 2, 3 are correct	a) if only 1 correct
31.	A 2 <i>m</i> long rod of radius 1 developed will be	1 <i>cm</i> which is fixed from or	ne end is given a twist of 0.8	3 radians. The shear strain
	a) 0.002	b) 0.004	c) 0.008	d) 0.016
32.			100 cm is clamped and its o	other end is twisted through
	and angle of 30°. Then an	70 m	express ster	
	a) 0.012°	b) 0.12°	c) 1.2°	d) 12°
33.	<i>K</i> is the force constant of	ran i na a <u>u d</u> iffich fan an a <u>ra</u> n i maran na ar an i maran an an i man an a	increasing its extension fr	
	a) $K(l_2 - l_1)$	b) $\frac{K}{2}(l_2 + l_1)$	c) $K(l_2^2 - l_1^2)$	d) $\frac{K}{2}(l_2^2 - l_1^2)$
34.	A wire suspended vertica	lly from one of its ends is s	tretched by attaching a wei	ight of 200 N to the lower
		n - Andrew College (College College Co	ne elastic energy stored in t	
	a) 0.2 J	b) 10 J	c) 20 J	d) 0.1 J
35.			ve their lengths in the ratione force, their elongations we c) 1:8	
36.	extension is proportional	to the stretching force. Tw	force of 10 N, and for tension such springs are joined elength. The total strain end	
37	Write conner steel glass	and rubber in order of inc	reasing coefficient of elastic	rity
	a) Steel, rubber, copper, g		b) Rubber, copper, steel,	
	c) Rubber, glass, steel, co	5 (C.C.) (C.C.)	d) Rubber, glass, copper,	
38.	The Bulk modulus for an	30 Table 10		
	a) Zero	b) Unity	c) Infinity	d) Between 0 and 1
39.		ng quantities does not have	the unit of force per unit a	rea
	a) Stress		b) Strain	
	c) Young's modulus of ela	isticity	d) Pressure	

	required is [Y for steel =	$2.2 \times 10^{11} N/m^2$	M.A.	oss-section 2 mm^2 , the force
	a) $1.1 \times 10^5 N$		c) $1.1 \times 10^3 N$	d) $1.1 \times 10^2 N$
41.	10 m	s stretched by 1 mm. If the o	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	
		temperature of the wire. (0	기 :	cm ⁻² , density of copper=
		t of copper = $0.1 \text{ cal g}^{-1} ^{\circ}\text{C}^{-1}$	⁻¹)	
	a) ^{252°C}	b) (1/252)°C	c) 1000°C	d) 2000°C
42		11 10 10 10 10 10 10 10 10 10 10 10 10 1	West little with board recess	10-10-10-10-10-10-10-10-10-10-10-10-10-1
42.		01 m by a certain force F . A		
		original wire is stretched by		<u> </u>
42	a) 0.005 m	b) 0.01 m	c) 0.02 m	d) 0.002 m
43.	아마리 아마이 아니는	l wire of the same diameter	즐거리 아니아 아이들의 얼마를 사는 나는 아이들이 하는 사이를 하는 것이 하는데 아이를 잃었다면 하다.	
		their combined length by 1		
	a) Different stresses and		b) The same stress and s	
202	c) The same strain but di		d) The same stress but di	
44.		bber and iron are stretched	i by the same weight, then	the number of atoms in the
	iron wire will be		121 0 0 0 0	11
	a) Equal to that of rubber		b) Less than that of the r	ubber
	c) More than that of the	ubber	d) None of the above	
45.	0.50	ibjected to a tangential force		r face, keeping lower face
		isplaced by 0.001 radian re	707	
	이 가게 되었다. 아니는 아니라 이 없는 아이를 살아가 있었다. 그런 아이는 아이를 내려가 되었다. 그런 아이를 보는 것이다.	ar modulus of the material		ng the uncetton of
	= 4.010 xx = 2			D =12 2
	a) 3 × 10 × 1111	b) 5 $\times 10^{11} \text{ Nm}^{-2}$	c) $5 \times 10^{12} \text{ Nm}^{-2}$	d) 5 \times 10 ¹³ Nm ⁻²
46.	If Poisson's ratio σ is $-\frac{1}{2}$	for a material, then the mat	terial is	
	a) Uncompressible		c) Compressible	d) None of the above
47				strain of 2×10^{-3} , then the
5-70.5:20	percentage change in vo		or resulted a foriginalities	or and or a second
	25E (US)		2.00	d) Zero
	a) 0.6	b) 0.4	c) 0.2	
48.	a) 0.6 A wire of area of cross-se	b) 0.4 ection $10^{-6}m^2$ is increased	c) 0.2 in length by 0.1%. The tens	
48.	A wire of area of cross-se	ection $10^{-6}m^2$ is increased		
48.	A wire of area of cross-se The Young's modulus of	ection $10^{-6}m^2$ is increased wire is	in length by 0.1%. The tens	sion produced is 1000 N.
	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$	in length by 0.1%. The tens c) $10^{10}N/m^2$	sion produced is 1000 N . d) $10^9 N/m^2$
	A wire of area of cross-se The Young's modulus of a) $10^{12}N/m^2$ To what depth below the	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub	in length by 0.1% . The tens c) $10^{10}N/m^2$ ober ball be taken as to dec	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ?
	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take : density of sea way	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$	in length by 0.1% . The tens c) $10^{10}N/m^2$ ober ball be taken as to dec	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ?
	A wire of area of cross-see The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take : density of sea war gravity = $10 \ ms^{-2}$]	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo	in length by 0.1%. The tens c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to
49.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = $10 ms^{-2}$] a) 9 m	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo	in length by 0.1%. The tens c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$
49.	A wire of area of cross-se The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take : density of sea war gravity = $10 ms^{-2}$] a) 9 m The radii and Young's model.	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18m$ odulii of two uniform wires	in length by 0.1%. The tens c) $10^{10}N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both
49.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's modulus of the radii and Young's modulus are subjected to the	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rubter = $1000kgm^{-3}$, Bulk mobility 18 m odulii of two uniform wires e same longitudinal force. I	in length by 0.1%. The tens c) $10^{10}N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$
49.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's mowires are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected to the percentage increase in legal n and n are subjected n are subjected n and n are subjected n are subjected n and n are subjected n and n are subjected n are subjected n are subjected n and n are subjected n and n are subjected n are subjected n are subjected n and n are subjected n are subjected n and n are subjected n are subjected n and n are subjected n are subjected n are subjected n are subjected n and n are subjected n are subjected n and n are subjected n a	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rubter = $1000kgm^{-3}$, Bulk modulii of two uniform wires e same longitudinal force. Ingth of the wire B is	in length by 0.1%. The tensor c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:15 f the increase in length of the contraction of the con	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and $1:2$ respectively. Both the wire A is one percent, the
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take : density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's modulus of the percentage increase in least 1.0	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk modulii of two uniform wires e same longitudinal force. Ingth of the wire B is b) 1.5	in length by 0.1%. The tens c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of t c) 2.0	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ l and $1:2$ respectively. Both the wire A is one percent, the d) 3.0
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's modulus are subjected to the percentage increase in least 1.0 If a bar is made of copper	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear	in length by 0.1%. The tensor c) $10^{10}N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of the coduction of the expansion is one and a harmonic coduction.	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ 1 and 1:2 respectively. Both he wire A is one percent, the d) 3.0 If times that of iron, the
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m. The radii and Young's movines are subjected to the percentage increase in lead 1.0. If a bar is made of copperatio of the force development.	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear and the copper bar to the	in length by 0.1%. The tens c) $10^{10} N/m^2$ beer ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:15 f the increase in length of the company of the company of the company of the table of the company of the table of the company of the company of the company of the table of the table of the company of th	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and $1:2$ respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the is and cross-sections, when
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's moving are subjected to the percentage increase in lead of 1.0 If a bar is made of copperatio of the force development of the same of t	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear	in length by 0.1%. The tens c) $10^{10} N/m^2$ beer ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:15 f the increase in length of the company of the company of the company of the table of the company of the table of the company of the company of the company of the table of the table of the company of th	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and $1:2$ respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the is and cross-sections, when
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's mowires are subjected to the percentage increase in lead 1.0 If a bar is made of copperatio of the force develop heated through the same iron) is	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 The whose coefficient of linear and in the copper bar to the temperature range (Young	in length by 0.1%. The tense c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of the c) 2.0 expansion is one and a had iron bar of identical length g's modulus for copper may	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and $1:2$ respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the is and cross-sections, when
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m. The radii and Young's movines are subjected to the percentage increase in lead 1.0. If a bar is made of copperation of the force developheated through the same iron) is a) 3/2	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear ted in the copper bar to the temperature range (Young	in length by 0.1%. The tens c) $10^{10} N/m^2$ beer ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:15 f the increase in length of the company of the company of the company of the table of the company of the table of the company of the company of the company of the table of the table of the company of th	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the as and cross-sections, when a be taken equal to that of
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's modulus of the radii and Young's modulus are subjected to the percentage increase in least 1.0 If a bar is made of copperatio of the force development of the force development of the same iron) is a) $3/2$ The breaking stress of a second of the force development	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear ted in the copper bar to the temperature range (Young	in length by 0.1%. The tense c) $10^{10}N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of the c) 2.0 rexpansion is one and a had iron bar of identical length g's modulus for copper may c) $9/4$	sion produced is $1000 N$. d) $10^9 N/m^2$ rease its volume by 0.1% ? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the as and cross-sections, when a be taken equal to that of
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m. The radii and Young's moving are subjected to the percentage increase in lead 1.0. If a bar is made of copperatio of the force develop heated through the same iron) is a) 3/2. The breaking stress of a sale along the breaking stress of a sale along the same along the sam	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear ted in the copper bar to the temperature range (Young	c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of t c) 2.0 expansion is one and a hairon bar of identical length g's modulus for copper may c) $9/4$ b) Radius of the wire	d) $10^9 N/m^2$ rease its volume by 0.1%? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the as and cross-sections, when a be taken equal to that of d) $4/9$
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m The radii and Young's modulus of the radii and Young's modulus are subjected to the percentage increase in least 1.0 If a bar is made of copperatio of the force development of the force development of the same iron) is a) $3/2$ The breaking stress of a second of the force development	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear ted in the copper bar to the temperature range (Young	in length by 0.1%. The tense c) $10^{10}N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of the c) 2.0 rexpansion is one and a had iron bar of identical length g's modulus for copper may c) $9/4$	d) $10^9 N/m^2$ rease its volume by 0.1%? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the as and cross-sections, when a be taken equal to that of d) $4/9$
49. 50.	A wire of area of cross-set The Young's modulus of a) $10^{12}N/m^2$ To what depth below the [Take: density of sea war gravity = 10 ms^{-2}] a) 9 m. The radii and Young's moving are subjected to the percentage increase in lead 1.0. If a bar is made of copperatio of the force develop heated through the same iron) is a) 3/2. The breaking stress of a sale along the breaking stress of a sale along the same along the sam	ection $10^{-6}m^2$ is increased wire is b) $10^{11}N/m^2$ surface of sea should a rub ter = $1000kgm^{-3}$, Bulk mo b) $18 m$ odulii of two uniform wires e same longitudinal force. I ngth of the wire B is b) 1.5 whose coefficient of linear ted in the copper bar to the temperature range (Young	c) $10^{10} N/m^2$ ober ball be taken as to decodulus of rubber = 9×10^8 c) $180 m$ A and B are in the ratio 2:1 f the increase in length of t c) 2.0 expansion is one and a hairon bar of identical length g's modulus for copper may c) $9/4$ b) Radius of the wire	d) $10^9 N/m^2$ rease its volume by 0.1%? Nm^{-2} ; acceleration due to d) $90 m$ I and 1:2 respectively. Both the wire A is one percent, the d) 3.0 If times that of iron, the as and cross-sections, when a be taken equal to that of d) $4/9$

53. The graph is drawn between the applied force F and the strain (x) for a thin uniform wire. The wire behaves as a liquid in the part

- a) ab
- b) bc

c) cd

- d) oa
- 54. A particle of mass m is under the influence of a force F which varies with the displacement x according to the relation $F = -kx + F_0$ in which k and F_0 are constants. The particle when disturbed will oscillate
 - a) About x = 0, with $\omega \neq \sqrt{k/m}$

- b) About x = 0, with $\omega = \sqrt{k/m}$
- c) About $x = F_0/k$, with $\omega = \sqrt{k/m}$
- d) About $x = F_0/k$, with $\omega \neq \sqrt{k/m}$
- 55. Two wires of copper having the length in the ratio 4:1 and their radii ratio as 1:4 are stretched by the same force. The ratio of longitudinal strain in the two will be
 - a) 1:16
- b) 16:1
- c) 1:64
- d) 64:1
- 56. A copper bar of length L and area of cross-section A is placed in a chamber at atmospheric pressure. If the chamber is evacuated, the percentage change in its volume will be (compressibility of copper is $8 \times 10^{12} \text{m}^2 \text{ N}^{-1}$ and $1 \text{ atm} = 10^5 \text{N m}^2$)
 - a) 8×10^{-7}
- b) 8×10^{-5}
- c) 1.25×10^{-4}
- d) 1.25×10^{-5}
- 57. A uniform plank of Young's modulus *Y* is moved over a smooth horizontal surface by a constant force *F*. The area of cross section of the plank is *A*. The compressive strain on the plank in the direction of the force is
 - a) F/AY
- b) 2*F/AY*
- c) $\frac{1}{2}(F/AY)$
- d) 3*F/AY*
- 58. The potential energy *U* between two molecules as a function of the distance *X* between them has been shown in the figure. The two molecules are

- a) Attracted when x lies between A and B and are repelled when X lies between B and C
- b) Attracted when x lies between B and C and are repelled when X lies between A and B
- c) Attracted when they reach B
- d) Repelled when they reach B
- 59. Energy stored in stretching a string per unit volume is
 - a) $\frac{1}{2}$ × stress × strain
- b) stress × strain
- c) Y(strain)²
- d) $\frac{1}{2}Y$ (stress)²
- 60. A student performs an experiment to determine the Young's modulus of a wire, exactly 2 m long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be 0.8~mm with an uncertainty of $\pm 0.05~mm$ at a load of exactly 1.0~kg. The student also measures the diameter of the wire to be 0.4~mm with an uncertainty of $\pm 0.01mm$. Take $g=9.8~m/s^2$ (exact). The Young's modulus obtained from the reading is
 - a) $(2.0 \pm 0.3) \times 10^{11} N/m^2$

b) $(2.0 \pm 0.2) \times 10^{11} N/m^2$

c) $(2.0 \pm 0.1) \times 10^{11} N/m^2$

- d) $(2.0 \pm 0.05) \times 10^{11} N/m^2$
- 61. A body of mass *m* is suspended to an ideal spring of force constant *k*. The expected change in the position of the body due to an additional force *F* acting vertically downwards is
 - a) $\frac{3F}{2k}$

b) $\frac{2F}{k}$

c) $\frac{5F}{2k}$

d) $\frac{4F}{k}$

02.	oti coo to strain rado io equivalent i		
	a) Modulus of elasticity	b) Poiss	
62	The lead warrang alangation		

ion's Ratio

d) Fund number

63. The load versus elongation graph for four wires of the same material is shown in the figure. The thickest wire is represented by the line

a) 0D

b) 0C

c) 0B

64. A rubber cord 10 m long is suspended vertically. How much does it stretch under its own weight (Density of rubber is $1500 kg/m^3$, $Y = 5 \times 10^8 N/m^2$, $g = 10 m/s^2$)

a) $15 \times 10^{-4} m$

b) $7.5 \times 10^{-4} m$

c) $12 \times 10^{-4} m$

c) Reynold number

d) $25 \times 10^{-4} m$

65. Equal torsional torques act on two rods *x* and *y* having equal length. The diameter of rod *y* is twice the diameter of rod x. If θ_x and θ_y are the angles of twist, then $\frac{\theta_x}{\theta_y}$ =

a) 1

d) 16

66. When a spring is stretched by a distance x, it exerts a force, given by $F = (-5x - 16x^3)N$. The work done, when the spring is stretched from 0.1 *m* to 0.2 *m* is

a) $8.7 \times 10^{-2}I$

b) $12.2 \times 10^{-2}I$

c) 8.7×10^{-1}

d) 12.2×10^{-1}

67. The elastic energy stored in a wire of Young's modulus Yis

a) $\frac{1}{2}Y \times \text{stress} \times \text{strain} \times \text{volume}$

c) stress × strain × volume

68. According to Hooke's law of elasticity, if stress is increased, them the ratio of stress to strain

b) Remains constant

c) Decreases

69. When a force is applied on a wire of uniform cross-sectional area $3 \times 10^{-6} \, \text{m}^2$ and length 4 m, the increase in length is 1mm. Energy stored in it will be

 $(Y = 2 \times 10^{11} \text{N/m}^2).$

a) 6250J

b) 0.177]

c) 0.075[

d) 0.150J

70. The Young's modulus of the material of a wire is 6×10^{12} Nm⁻² and there is no transverse strain it, then its modulus of rigidity will be

a) $3 \times 10^{12} \text{ Nm}^{-2}$

b) $2 \times 10^{12} \text{ Nm}^{-2}$ c) 10^{12} Nm^{-2}

d) None of these

71. A weight of 200 kg is suspended by vertical wire of length 600.5cm. The area of cross-section of wire is $1mm^2$. When the load is removed, the wire contracts by 0.5 cm. The Young's modulus of the material of wire will be

a) $2.35 \times 10^{12} N/m^2$

b) $1.35 \times 10^{10} N/m^2$

c) $13.5 \times 10^{11} N/m^2$

d) $23.5 \times 10^9 N/m^2$

72. Two wires of the same material and length but diameters in the ratio 1:2 are stretched by the same force. The potential energy per unit volume for the two wires when stretched will be in the ratio

73. A thick rope of rubber of density $1.5 \times 10^3 \text{ kgm}^{-3}$ and Young's modulus $5 \times 10^6 \text{Nm}^{-2}$, 8m in length is hung from the ceiling of a room, the increase in ϕ its length due to its own weight is

a) 9.6×10^{-2} m

b) 19.2×10^{-2} m c) 9.6×10^{-3} m

d) 9.6 m

74. A load suspended by a massless spring produces an extension of x cm in equilibrium. When it is cut into two unequal parts, the same load produces an extension of 7.5 cm when suspended by the larger part of length 60 cm. When it is suspended by the smaller part, the extension is 5.0 cm. Then

	a) $x = 12.5$	b) $x = 3.0$	
75.	c) The length of the original spring is 90 cm If the force constant of a wire is K , the work done in	d) The length of the origi increasing the length of th c) $Kl^2/2$	
76	a) K/2 b) Kl Mark the wrong statement	c) K1-/2	a) Ki-
70.	a) Sliding of molecular layer is much easier than cor	npression or expansion	
	b) Reciprocal of bulk modulus of elasticity is called o	U-727	
	c) It is difficult to twist a long rod as compared to sn		
	d) Hollow shaft is much stronger than a solid rod of	same length and same mas	S
77.	A pan with set of weights is attached with a light spr oscillates with a time period of $0.6\ s$. When some ad		7 17 17 17 17 17 17 17 17 17 17 17 17 17
	The extension caused by the additional weights is ap	18 To 1977 (1978) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
122	a) 1.38 cm b) 3.5 cm	c) 1.75 cm	d) 2.45 cm
78.	To break a wire, a force of $10^6 N/m^2$ is required. If the		$3 \times 10^3 kg/m^3$, then the
	length of the wire which will break by its own weight a) 34 m b) 30 m		4) 2
70	a) $34 m$ b) $30 m$ A light rod of length $2m$ suspended from the ceiling	c) 300 m	d) 3 m
1 5.	length. A weight W is hung from a light rod as show	사람이 아니다 내가 있다면 하면 얼마나 가게 하는데 가지 않는데 어디에 가지 않는데 그 때문에 되다.	
	cross-sectional area $A_1 = 0.1 cm^2$ and brass wire of		
	stress in both wires, $T_1/T_2 =$		60 455 (1471) 121 (1471) 121 (1471) 131 (1471) 13 (14
	T_1 T_2		
	Steel Brass		
	\overline{W}		
	a) 1/3 b) 1/4	c) 4/3	d) 1/2
80.	A stretched rubber has		
	a) Increased kinetic energy	b) Increased potential en	0.
0.4	c) Decreased kinetic energy	d) Decreased potential en	
81.	A brass rod of cross-sectional area $1cm^2$ and length Young's modulus of elasticity of brass is $1 \times 10^{11} N/$	(F)	(5) (37) (37)
	the rod will be	m^{-} and $g = 10m/sec^{-}$, tr	ien increase in the energy of
		c) $5 \times 10^{-5} J$	d) $2.5 \times 10^{-4} J$
82.	Which one of the following statements is wrong	c) 5 × 10)	u) 2.5 × 10)
	a) Young's modulus for a perfectly rigid body is zero	i	
	b) Bulk modulus is relevant for solids, liquids and ga		
	c) Rubber is less elastic than steel		
	d) The Young's modulus and shear modulus are rele		
83.	There are two wires of the same length. The diameter		
	the same load to both the wires, the extension produ		
0.4	a) 1:4 b) 1:2	c) 2:1	d) 4:1
84.	Which of the following substances has the highest el	**	d) Connon
25	a) Sponge b) Steel A rope 1cm in diameter breaks, if the tension in it ex	c) Rubber	d) Copper
03.	to similar rope of diameter 3 cm is	ceeds 500 N. The maximum	ii telisioli tilat illay be giveli
	a) 500 N b) 3000 N	c) 4500 N	d) 2000 N
86.	The increase in length on stretching a wire is 0.05%		
0.65950	a) 0.01% b) 0.02%	c) 0.03%	d) 0.04%
	and the second distriction		

- 87. A cube is subjected to a uniform volume compression. If the side of the cube decreases by 1% the bulk strain is
 - a) 0.01

- b) 0.02
- c) 0.03
- d) 0.06
- 88. Two wires of length l, radius r and length 2l, radius 2r respectively having some Young's modulus are hung with a weight mg. Net elongation is
 - a) $\frac{3 \, mgl}{\pi r^2 Y}$
- b) $\frac{2 \text{ mgl}}{3\pi r^2 Y}$
- c) $\frac{3 \text{ mgl}}{2\pi r^2 Y}$
- d) $\frac{3 \, mgl}{4\pi r^2 Y}$
- 89. A rectangular block of size $10cm \times 8cm \times 5cm$ is kept in three different positions P, Q and R in turn as shown in the figure. In each case, the shaded area is rigidly fixed and a definite force F is applied tangentially to the opposite face to deform the block. The displacement of the upper face will be

a) Same in all the three cases

b) Maximum in P position

c) Maximum in Q position

- d) Maximum in R position
- 90. A spring of constant k is cut into parts of length in the ratio 1:2. The spring constant of larger on is
 - a) $\frac{k}{2}$

b) $\frac{k}{3}$

c) $\frac{2k}{3}$

- d) $\frac{3k}{2}$
- 91. When a certain weight is suspended from a long uniform wire, its length increases by 1 cm. If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one, the increase in length will be
 - a) 0.5 cm
- b) 2 cm
- c) 4 cm
- d) 8 cm
- 92. The rubber cord catapult has a cross-sectional area 1 mm² and total unsaturated length 10.0 cm. It is stretched to 12.0 cm and then released to project a miscible of mass 5.0 g. Taking Young's modulus for rubber as, the tension in the cord is
 - a) 1000 N
- b) 100 N
- c) 10 N
- d) 1 N

- 93. The reason for the change in shape of a regular body is
 - a) Volume stress
- b) Shearing strain
- c) Longitudinal strain
- d) Metallic strain
- 94. The general form of potential energy curve for atoms or molecules can be represented by the following equation $U(R) = \frac{A}{R^n} \frac{B}{R^m}$. Here, R is the interatomic or molecular distance, A and B are coefficients, n and m are the exponents. In the above equation
 - a) First term represents the attractive part of the potential
 - b) Second term represents the attractive part of the potential
 - c) Both terms represents the attractive part of the potential
 - d) Second term represents the repulsive part of the potential
- 95. A wire $(Y = 2 \times 10^{11} \text{ Nm}^{-2})$ has length 1 m and area of cross-section 1 mm². The work required to increase its length by 2 mm is

100 J

96. A substance breaks down by a stress of 10^6 Nm⁻². If the density of the material of the wire is 3 \times 10³ kgm⁻³, then the length of the wire of the substance which will break under its own weight when suspended vertically is

- 97. Identify the incorrect statement.
 - a) Young's modulus and shear modulus are relevant only for solids
 - b) Bulk modulus is relevant for solids, liquids and gases
 - c) Alloys have larger values of Young's modulus than metals
 - d) Metals have larger values of Young's modulus than elastomers
- 98. The specific heat at constant pressure and at constant volume for an ideal gas are C_p and C_v and its adiabatic and isothermal elasticities are E_{ϕ} and E_{θ} respectively. The ratio of E_{ϕ} to E_{θ} is

a)
$$C_v/C_p$$

b)
$$C_p/C_v$$

c)
$$C_p C_v$$

d)
$$1/C_nC_v$$

99. When a wire of length 10m is subjected to a force of 100 N along its length, the lateral strain produced is 0.01×10^{-3} m. The Poisson's ratio was found to be 0.4. If the area of cross-section of wire is 0.025 m², its Young's modulus is

a)
$$1.6 \times 10^8 \,\mathrm{Nm^{-2}}$$

b)
$$2.5 \times 10^{10} \,\mathrm{Nm^{-2}}$$

c)
$$1.25 \times 10^{11} \text{Nm}^{-2}$$

- d) $16 \times 10^9 \text{Nm}^{-2}$
- 100. The Poisson's ratio of a material is 0.4. If a force is applied to a wire of this material, there is decrease of cross-sectional area by 2%. The percentage increase in its length is

- d) 0.5%
- 101. The stress versus strain graphs for wires of two materials A and B are as shown in the figure. If Y_A and Y_B are the Young's modulii of the materials, then

a)
$$Y_B = 2Y_A$$

b)
$$Y_A = Y_B$$

c)
$$Y_B = 3Y_A$$

d)
$$Y_A = 3Y_B$$

102. A wire whose cross-section is 4 mm2 is stretched by 0.1 mm by a certain weight. How far will a wire of the same material and length stretch if its cross-sectional area is 8 mm² and the same weight is attached?

- d) 0.012 mm
- 103. A uniform metal rod of 2 mm 2 cross-section is heated from 0^{0} C to 20^{0} C. The coefficient of the linear expansion of the rod is 12×10^{-6} /°C. Its Young's modulus of elasticity is 10^{11} Nm⁻². The energy stored per unit volume of the rod is
 - a) $1440 \, \text{Jm}^{-3}$
- b) $15750 \, \text{Jm}^{-3}$
- c) $1500 \, \text{Jm}^{-3}$
- d) $2880 \, \text{Jm}^{-3}$
- 104. The diagram shows stress v/s strain curve for the materials A and B. From the curves we infer that

a) A is brittle but B is ductile

b) A ductile and B is brittle

c) Both A and B are ductile

- d) Both A and B are brittle
- 105. What is the increase in elastic potential energy when the stretching force is increased by 200 kN?

al	238.5 J
uj	230.33

106. The energy stored per unit volume in copper wire, which produces longitudinal strain of 0.1% is (Y = $1.1 \times 10^{11} \text{Nm}^{-2}$

a)
$$11 \times 10^3 \text{Jm}^{-3}$$

b)
$$5.5 \times 10^3 \text{Jm}^{-3}$$

c)
$$5.5 \times 10^4 \text{Jm}^{-3}$$

d)
$$11 \times 10^4 \text{Jm}^{-3}$$

107. The length of an elastic string is a metre when the tension is 44 N, and b metre when the tension is 5 N. The length in metre when the tension is 9 N, is

a)
$$4a - 5b$$

b)
$$5b - 4a$$

c)
$$9b - 9a$$

d)
$$a + b$$

108. A wire of length 50 cm and cross sectional area of 1 sq. mm is extended by 1 mm. The required work will be $(Y = 2 \times 10^{10} Nm^{-2})$

a)
$$6 \times 10^{-2}$$
 /

b)
$$4 \times 10^{-2}$$
 /

c)
$$2 \times 10^{-2}$$
 /

d)
$$1 \times 10^{-2}$$
 /

109. When a force is applied on a wire of uniform cross sectional area $3 \times 10^{-6} \text{m}^2$ and length 4m, the increase in length is 1 mm. Energy stored in it will be

$$(Y = 2 \times 10^{11}) \text{Nm}^{-2}$$

110. The force required to stretch a steel wire of 1 cm² cross-section to 1.1 times its length would be $(Y = 2 \times 10^{11} \text{Nm}^{-2})$

a)
$$^{2} \times 10^{6} \, \text{N}$$

b)
$$2 \times 10^{3} \text{ N}$$

c)
$$2 \times 10^5 \text{ N}$$

d)
$$2 \times 10^{-6}$$
 N

111. A wire of Young's modulus 1.5×10^{12} Nm⁻² is stretched by a force so as to produce a strain of 2×10^4 . The energy stored per unit volume is

a)
$$3 \times 10^8 \, \text{Jm}^{-3}$$

b)
$$3 \times 10^3 \, \text{Jm}^{-3}$$

c)
$$6 \times 10^3 \text{ Jm}^{-3}$$

d)
$$3 \times 10^4 \text{ Jm}^{-3}$$

112. The relationship between Young's modulus Y, Bulk modulus K and modulus of rigidity η is

a)
$$Y = \frac{9\eta K}{\eta + 3K}$$

b)
$$\frac{9YK}{Y+3K}$$

c)
$$Y = \frac{9\eta K}{3+K}$$

$$d) Y = \frac{3\eta K}{9n + K}$$

113. A rod elongated by l when a body of mass M is suspended from it. The work done is

b)
$$\frac{1}{2}Mgl$$

114. A graph is shown between stress and strain for a metal. The part in which Hooke's law holds good is

a) 0A

b) AB

c) BC

d) CD

115. For a given material, the Young's modulus is 2.4 times that of rigidity modulus. Its Poisson's ratio is

b) 1.2

c) 0.4

116. The lower surface of a cube is fixed. On its upper surface, force is applied at an angle of 30° from its surface. The change will be of the type

- b) Size
- c) None
- d) Shape and size

117. A steel wire of cross-sectional area $3 \times 10^{-6} \, \mathrm{m}^2$ can withstand a maximum strain of 10^{-3} . Young's modulus of steel is $2 \times 10^{11} \text{Nm}^{-2}$. The maximum mass the wire can hold is (take g = 10 ms⁻²)

- b) 60 kg
- c) 80 kg
- d) 100 kg

118. A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2R will be

- a) F/2
- b) 2F

c) 4F

d) F/4

119. The adjacent graph shows the extension (l) of a wire of length 1m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross-sectional area of the wire is 10^{-6} m², calculate the Young's modulus of the material of the wire.

a)
$$2 \times 10^{11} \,\mathrm{Nm^{-2}}$$

b)
$$2 \times 10^{-11} \, \text{Nm}^{-2}$$

b)
$$2 \times 10^{-11} \,\mathrm{Nm^{-2}}$$
 c) $3 \times 10^{12} \,\mathrm{Nm^{-2}}$ d) $2 \times 10^{13} \,\mathrm{Nm^{-2}}$

d)
$$2 \times 10^{13} \, \text{Nm}^{-2}$$

120. The Young's modulus of brass and steel are 10 $\, imes$ 10 10 Nm $^{-2}$ and 2 imes 10 11 Nm $^{-2}$ respectively. A brass wire and a steel wire of the same length are extended by 1 mm under the same force. The radii of the brass and steel wires are R_B and R_S respectively. Then

a)
$$R_A = \sqrt{2} R_B$$

b)
$$R_S = \frac{R_B}{\sqrt{2}}$$

c)
$$R_S = 4 R_B$$

d)
$$R_S = \frac{R_B}{4}$$

121. The length of a wire is 1.0 m and the area of cross-section is 1.0×10^{-2} cm². If the work done for increase in length by 0.2 cm is 0.4 joule, then Young's modulus of the material of the wire is

a)
$$2.0 \times 10^{10} N/m^2$$

b)
$$4.0 \times 10^{10} N/m^2$$

c)
$$2.0 \times 10^{11} N/m^2$$

d)
$$4.0 \times 10^{11} N/m^2$$

122. X linear strain is produced in a wire of elasticity coefficient Y. The stored potential energy in unit volume of this wire is

a)
$$Yx^2$$

b)
$$2Yx^2$$

c)
$$\frac{1}{2}Y^2x$$

d)
$$\frac{1}{2}Yx^2$$

123. Two bars A and B of circular cross-section and of same volume and made of the same material are subjected to tension. If the diameter of A is half that of B and if the force applied to both the rods is the same and it is in the elastic limit, the ratio of extension of A to that of B will be

124. Find the extension produced in a copper of length 2 m and diameter 3 mm, when a force of 30 N is applied. Young's modulus for copper = $1.1 \times 10^{11} \text{Nm}^{-2}$

125. Which is the most elastic

126. A force of 200 N is applied at one end of a wire of length 2m and having area of cross-section $10^{-2}cm^2$. The other end of the wire is rigidly fixed. If coefficient of linear expansion of the wire $\alpha = 8 \times 10^{-6}$ oC and Young's modulus $Y = 2.2 \times 10^{11} \, N/m^2$ and its temperature is increased by 5°C, then the increase in the tension of the wire will be

127. Two wires, one made of copper and other of steel are joined end to end (as shown in figure). The area of cross-section of copper wire is twice that of steel wire.

They are placed under compressive force of magnitudes F. The ratio for their lengths such that change in lengths of both wires are same is $(Y_s = 2 \times 10^{11} \text{Nm}^{-2} \text{ and } Y_c = 1.1 \times 10^{11} \text{ Nm}^{-2})$

128. A rubber cord catapult has cross-sectional area 25 mm² and initial length of rubber cord is 10 cm. It is stretched to 5 cm and then released to project a missile of mass 5gm. Taking $Y_{rubber} = 5 \times 10^8 N/m^2$ velocity of projected missile is

a) 20 ms ⁻¹ 129. Young's modulus of p	b) 100 ms ⁻¹ perfectly rigid body material	c) $250 \ ms^{-1}$	d) $200 \ ms^{-1}$
	 b) Zero f a material is 0.1. If the longing the volume of the rod will be 		
a) 0.008%	b) 0.08%	c) 0.8%	d) 8%
k is spring constant)	x on loading, then the energ	y stored by the spring is (if	T is tension in the spring and
a) $\frac{T^2}{2x}$	b) $\frac{T^2}{2k}$	c) $\frac{2x}{T^2}$	d) $\frac{2T^2}{k}$
found that the length the Young's modulus		1 mm as equilibrium is achi	eved. Taking g = 3.1π ms ⁻² ,
a) $2.0 \times 10^8 \text{Nm}^{-2}$		c) $2.0 \times 10^{11} \text{Nm}^{-2}$	
material is nearly	depth of 100 m in a lake. The	change in volume is 0.1%.	The bulk modulus of the
a) 10 Pa	b) 10 ⁴ Pa	c) 10 ⁷ Pa	d) 10 ⁶ Pa
134. Calculate the work do a) Mgl	one, if a wire is loaded by 'Mg b) Zero	y' weight and the increase i c) Mgl/2	n length is 'l' d) 2 <i>Mgl</i>
	entical springs are shown. Fr ut when a weight of 6 kg is h		
a) 1 cm	b) 2 cm	c) 3 cm	d) 4 cm
the wire and whirled	th 2 m, radius 1 mm and $Y =$ in a vertical circle with an arst point of the vertical circle,	ngular velocity of 2 revoluti	ons per second. When the
a) 1 mm	b) 2 mm	c) 0.1 mm	d) 0.01 mm
b) The adiabatic andc) Young's modulus id) Stress multiplied b	olicable only within elastic lin isothermal elastic constants	of a gas are equal d energy	d) $\frac{YL}{A}$
	ZA	$\frac{c_j}{2L}$	$\frac{dJ}{A}$
a) Glass 140. The upper end of a wangle of 30°. Then an	b) Quartz ire of radius 4 mm length 10	c) Rubber 0 cm is clamped and its oth	d) Metal er end is twisted through an
a) ^{12°}	b) 0.12°	c) 1.2°	d) 0.012°

141. An iron bar of length L , cross-section A and Young's modulus Y is pulled by a force F from both ends so as					
to produce an elongation l. Which of the following statement is correct?					
a) $l \propto Y$	b) $l \propto l/A$	c) $l \propto A$	d) $l \propto l/L$		
142. Compressibility of water	is $5 \times 10^{10} \text{ m}^2 \text{N}^{-1}$. The charge	ange in volume of 100 mL.	water subjected to 15 ×		
10 ⁶ Pa pressure will		.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
a) No change	b) Increase by 0.75 mL	c) Decrease by 1.50 mL	d) Decrease by 0.75 mL		
143. The graph shown was ob	tained from the experiment	tal measurements of the pe	eriod of oscillation T for		
ingini ayya wasani alaa ahaa ahaa ahaa ahaa ahaa ahaa aha	d in the scale on the lower ϵ	end of the spring balance. T	he most likely reason for		
the line not passing throu	igh the origin is that				
T^2					
<u> </u>					
 a) Spring did not obey Hoo 	ok's law	b) Amplitude of oscillation	on was too large		
c) Clock used needed reg	ulation	d) Mass of the pan was no	nt neglected		
144. A fixed volume of iron is		- 150 St.	57.53		
force F is proportional to	(75)		(#.)		
a) $\frac{1}{I^2}$	b) $\frac{1}{I}$	c) L ²	d) <i>L</i>		
L .	L				
145. A beam of metal supporte	ed at the two ends is loaded	at the centre. The depress	ion at the centre is		
proportional to a) Y^2	b) <i>Y</i>	c) 1/Y	d) 1/Y ²		
		The state of the s	20 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2		
146. To break a wire of one metre length, minimum 40 <i>kg wt</i> , is required. Then the wire of the same material of double radius and 6 <i>m</i> length will require breaking weight					
double radius and $6 m$ less			wire of the same material of		
double radius and $6 m = 100$ doubl			d) $160 kg$ -wt		
	ngth will require breaking with kg -wt	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking 0 b) 240 kg - wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) 80 <i>kg-wt</i> 147. The points of maximum a	ngth will require breaking 0 b) 240 kg - wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking 0 b) 240 kg - wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking 0 b) 240 kg - wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking was b) $240 \ kg$ -wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking was b) $240 \ kg$ -wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul	ngth will require breaking was b) $240 \ kg$ -wt and minimum attraction in	veight c) 200 kg-wt	d) 160 <i>kg-wt</i>		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul $ \begin{array}{c} u \\ \hline Q \\ R \end{array} $ a) S and R	ngth will require breaking very by 240 kg-wt and minimum attraction in the es are respectively b) T and S	weight c) $200 kg$ -wt the curve between potential conditions R and S	d) $160 \ kg$ -wt all energy (U) and distance d) S and T		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul $V ightharpoonup P ightharpoonup Q ightharpoonup R ightharpoonup P ightharpoonup R ightharpoonup P ightharpoonup R ightharpoonu$	ngth will require breaking v b) 240 kg -wt and minimum attraction in the es are respectively $b) T \text{ and } S$ $\text{rce constants } k_p \text{ and } k_Q \left(k_Q\right)$	weight c) $200 \ kg$ -wt the curve between potentia c) R and S $a = \frac{k_p}{2}$ are stretched by ap	d) $160 \ kg$ -wt all energy (U) and distance d) S and T		
a) $80 \ kg$ -wt 147. The points of maximum a (r) of a diatomic molecul $V ightharpoonup P ightharpoonup Q ightharpoonup R ightharpoonup P ightharpoonup R ightharpoonup P ightharpoonup R ightharpoonu$	ngth will require breaking very by 240 kg-wt and minimum attraction in the es are respectively b) T and S	weight c) $200 \ kg$ -wt the curve between potentia c) R and S $a = \frac{k_p}{2}$ are stretched by ap	d) $160 \ kg$ -wt all energy (U) and distance d) S and T		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking V b) 240 kg - wt and minimum attraction in the estare respectively b) T and S arce constants k_p and k_Q (k_Q stored in Q is E , then the end b) $2E$ disciplified the circle of the estate E is the estate of E in the estate of E is the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the estate of E in the estate of E is the estate of E in the es	weight c) $200 \ kg$ -wt the curve between potential $S_2 = \frac{k_p}{2}$ are stretched by apergy stored in P is c) $E/8$ after effect is	d) $160 kg$ - wt all energy (U) and distance d) S and T applying forces of equal		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking v b) 240 kg -wt and minimum attraction in the are respectively b) T and S are constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ dically does not show elastically Rubber	weight c) $200 kg$ -wt the curve between potential c) R and S $Q = \frac{k_p}{2}$ are stretched by appergy stored in P is c) $E/8$ after effect is c) Steel	d) $160 kg$ - wt all energy (U) and distance d) S and T applying forces of equal d) $E/2$ d) Quartz		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking v b) 240 kg -wt and minimum attraction in the sare respectively b) T and S are constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ discally does not show elastic b) Rubber ang's modulus Y is subjected	weight c) $200 kg$ -wt the curve between potential c) R and S $Q = \frac{k_p}{2}$ are stretched by appergy stored in P is c) $E/8$ after effect is c) Steel	d) $160 kg$ - wt all energy (U) and distance d) S and T applying forces of equal d) $E/2$ d) Quartz		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking v b) 240 kg -wt and minimum attraction in the sare respectively b) T and S are constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ discally does not show elastic b) Rubber ang's modulus Y is subjected	weight c) $200 kg$ -wt the curve between potential $c = \frac{k_p}{2}$ are stretched by apergy stored in P is c) $E/8$ after effect is c) Steel d to a stress S . The elastic effect is	d) 160 kg-wt al energy (U) and distance d) S and T applying forces of equal d) E/2 d) Quartz energy stored per unit		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking v b) 240 kg -wt and minimum attraction in the sare respectively b) T and S are constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ discally does not show elastic b) Rubber ang's modulus Y is subjected	weight c) $200 kg$ -wt the curve between potential $c = \frac{k_p}{2}$ are stretched by apergy stored in P is c) $E/8$ after effect is c) Steel d to a stress S . The elastic effect is	d) 160 kg-wt al energy (U) and distance d) S and T applying forces of equal d) E/2 d) Quartz energy stored per unit		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	ngth will require breaking we b) 240 kg -wt and minimum attraction in the sare respectively b) T and S rece constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ cically does not show elastic b) Rubber ang's modulus Y is subjected by $\frac{S^2}{2Y}$	weight c) $200 kg$ -wt the curve between potential c) R and S $a = \frac{k_p}{2}$ are stretched by appergy stored in P is c) $E/8$ c after effect is c) Steel d to a stress S . The elastic ending S	d) $160 kg$ - wt all energy (U) and distance d) S and T applying forces of equal d) $E/2$ d) Quartz		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	b) $240 \ kg$ -wt and minimum attraction in the estare respectively b) T and S rece constants k_p and k_Q (k_Q stored in Q is E , then the ence b) $2E$ cically does not show elastic b) Rubber ang's modulus Y is subjected by $\frac{S^2}{2Y}$ elastic energy stored per uncertainty of the elastic energy stored per uncertainty.	weight c) $200 kg$ -wt the curve between potential c) R and S $Q = \frac{kp}{2}$ are stretched by appergy stored in P is c) $E/8$ c after effect is c) Steel d to a stress S . The elastic expectation of S init volume is	d) $160 kg$ -wt all energy (U) and distance d) S and T applying forces of equal d) $E/2$ d) Quartz energy stored per unit d) $\frac{2S}{Y}$		
a) 80 kg-wt 147. The points of maximum a (r) of a diatomic molecul (r) o	b) T and S rece constants k_p and k_Q (k_Q stored in Q is E , then the encoder b) E cically does not show elastic b) Rubber ang's modulus E b) E elastic energy stored per uncoder E	weight c) $200 kg$ -wt the curve between potential c) R and S $ a = \frac{k_p}{2}$ are stretched by appergy stored in P is c) $E/8$ c after effect is c) Steel d to a stress S . The elastic effect is c) $FL/2A$	d) $160 kg$ -wt all energy (U) and distance d) S and T applying forces of equal d) $E/2$ d) Quartz energy stored per unit d) $\frac{2S}{Y}$ d) $FL/2$		

	440
a)	39

b)
$$\frac{431}{39}$$

c)
$$\frac{451}{39}$$

d)
$$\frac{40}{39}$$

- 153. When a weight of 5 kg is suspended from a copper wire of length 30 m and diameter 0.5 mm, the length of the wire increases by 2.4 cm. If the diameter is doubled, the extension produced is
 - a) 1.2 cm
- b) 0.6 cm
- c) 0.3 cm
- d) 0.15 cm
- 154. When a weight w is hung from one and of the wire other end being fixed, the elongation produced in it be l. If this wire goes over a pulley and two weights weach are hung at the two ends, the elongation of the wire will be
 - a) ⁴l

b) 21

c) 1

- d) l/2
- 155. A particular force (F) applied on a wire increases its length by 2×10^{-3} m. To increase the wire's length by 4×10^{-3} m the applied force will be
 - a) 4 F

b) 3 F

c) 2 F

- d) F
- 156. The diameter of a brass wire is 0.6 mm and Y is $9 \times 10^6 \, \text{Nm}^{-2}$. The force which will increase its length by 0.2% is about
 - a) 100 N
- b) 51 N
- c) 25 N
- d) None of these
- 157. An aluminium rod, Young's modulus $7.0 \times 10^9 \text{N m}^{-2}$, has a breaking strain of 0.2%. The minimum crosssectional area of the rod in m2 in order to support a load of 104 N is

a)
$$1 \times 10^{-2}$$

b)
$$1.4 \times 10^{-3}$$

c)
$$1.0 \times 10^{-3}$$

d) 7.1×10^{-4}

- 158. In the above graph, point D indicates
 - a) Limiting point
- b) Yield point
- c) Breaking point
- d) None of the above
- 159. A steel wire of 1m long and $1mm^2$ cross section area is hang from rigid end. When weight of 1kg is hung from it then change in length will be (given $Y = 2 \times 10^{11} N/m^2$)
 - a) 0.5 mm
- b) 0.25 mm
- c) 0.05 mm
- d) 5 mm

- 160. Hooke's law defines
 - a) Stress
- b) Strain
- c) Modulus of elasticity
- d) Elastic limit
- 161. In the Young's experiment, If length of wire and radius both are doubled then the value of Y will become
 - a) 2 times
- b) 4 times
- c) Remains same
- d) Half
- 162. A wire can be broken by applying a load of 200 N. The force required to break another wire of the same length and same material, but double in diameter, is
 - a) 200 N
- b) 400 N
- c) 600 N
- d) 800 N
- 163. The temperature of a wire of length 1 m and area of cross section 1 cm2 is increased from0°C to 100°C. If the rod is not allowed to increased in length, the force required will be ($\alpha = 10^{-5}$)°C and $Y = 10^{11}$ N/m²)
 - a) 10^{3} N
- b) 10⁴N
- c) $10^5 N$
- d) 109N
- 164. Two cylinders of same material and of same length are joined to end as shown in figure. The upper end of A is rigidly fixed. Their radii are in ratio of 1:2, If the lower end of B is twisted by an angle θ , the angle of twist of cylinder A is

- b) $\frac{16}{15}\theta$
- c) $\frac{16}{17}\theta$
- d) $\frac{17}{16}\theta$

	ing stress causes ch			
a) Le	•	b) Breadth	c) Shape	d) Volume
diam	eter of first wire, the	me material and same leng en ratio of extension produc	ced in the wires by applying	g same load will be
a) 1:		b) 2:1	c) 1:2	d) 4:1
		o points at 20°C. The coeffi		
10^{-5}	/°C and Young's mod	dulus is $1.2 imes 10^{11} N/m^2$. Fi	nd the stress developed in	the rod if temperature of
	ecomes 10°C			
a) 1.3	$32 \times 10^7 N/m^2$	b) $1.10 \times 10^{15} N/m^2$	c) $1.32 \times 10^8 N/m^2$	d) $1.10 \times 10^6 N/m^2$
168. The i	ncrease in pressure	required to decrease the 20	00 L volume of a liquid by 0	.008% in kPa is (Bulk
modu	llus of the liquid $= 2$	100 MPa is)		
a) 8.4		b) 84	c) 92.4	d) 168
169. In sol	ids, inter-atomic for	ces are		
a) To	tally repulsive		b) Totally attractive	
	mbination of (a) and		d) None of these	
		⁻² is applied to a steel rod		th. Its Young's modulus is
		elongation produced in the		120
a) 3.1		b) 6.36	c) 5.18	d) 1.59
		ulus of a gas at atmospheri		
	nm of Hg		c) $1.013 \times 10^5 N/m^2$	
	: (C. Partinia P. C. Martinia R. 1987) [1] 2 [2] [2] [2] [2] [2] [2] [2] [2] [2]	attached to one end of a ste		사용 이용 없이 있다면 하는 것 같아요. 그 모양한 보다면 있다면 하는데 모습니다. 이 전에 하면 있다면 하는데
		other end is suspended ve		
		. When the load passes thr	ough its lowest position the	fractional change in length
4275	= 10 ms ⁻²)	num dan kasanakan tanun kecamakan ke	az autorom concretence	CONTROL CONTROL SERVICE AND
		b) 0.3×10^{-3}	- : '19. [이 1일 1일 다시	d) 0.3×10^4
	A-10-10-10-10-10-10-10-10-10-10-10-10-10-	Young's modulus is 2.4 time		
a) 0.1		b) 0.2	c) 0.3	d) 0.4
174 A wir	e of cross-sectional	area A is stretched horizon	tally hetween two clamps l	oaded at a distance 21
		A weight w kg suspended fr	77 70	
		istance through which the	하는 생님이 하는 것으로 가지 않는 것이 하는 것이 하는 것이 없는 것이었다면 없는 없었다면 없었다면 없는 것이었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없	집에 가장 그렇게 보다 되시는데 이번 이번 가장 하면 하면 하면 가장 그렇게 되었다.
a) x ²				Section of the sectio
a) "		b) $2x^2/l^2$	c) $x^2/2l$	d) $x/2l$
175. A wi	re is stretched under	r a force. If the wire sudden	ly snaps the temperature o	f the wire
a) Re	mains the same		b) Decrease	
	crease		d) First decrease then inc	rease
176. To ke	ep constant time, w	atches are fitted with balan	ce wheel made of	
a) Inv		b) Stainless steel	c) Tungsten	d) Platinum
	13	ater is $6 \times 10^{-10} N^{-1} m^2$. If 6	one litre is subjected to a pr	ressure of $4 \times 10^7 N m^{-2}$,
	ecrease in its volum			
a) 2.4		b) 10 <i>cc</i>	c) 24 <i>cc</i>	d) 15 <i>cc</i>
		its upper face displaced by	0.1 mm by a tangential for	ce of 8 kN. The shearing
	ilus of cube is	2 12	120 120	728 728
0.53		b) $4 \times 10^9 \text{Nm}^{-2}$	- A	43
	178		A CONTRACTOR OF THE CONTRACTOR	\mathfrak{g} th l . If Y is Young's modulus
		e, then the force constant o	f the wire is	
$\frac{YL}{}$, Yl	c) $\frac{YA}{I}$, YA
a) \overline{A}		b) $\frac{Yl}{A}$	c) $\frac{l}{l}$	d) $\frac{YA}{L}$
180. If the	interatomic spacing	g in a steel wire is 3.0Å and	$Y_{\text{start}} = 20 \times 10^{10} N / m^2 \text{ th}$	en force constant is
		b) $6 \times 10^{-9} N/Å$	c) $4 \times 10^{-5} N/Å$	d) $6 \times 10^{-5} N/\text{Å}$
٠, ٥,	, 10 11/11	-/ UNIO 11/11	-, 1 A 10 H/H	-, on to hijh

	181. $Y = \frac{mgl}{\pi r^2 L}$ formula would	d give Y if mg is doubled		
	a) 2Y	b) $\frac{Y}{2}$	c) Y	d) Zero
	182. The Poisson's ratio car	Z		
	a) 0.7	b) 0.2	c) 0.1	d) 0.3
		ıl and length but having fou	ir times the diameter by 1 \imath	
	a) $4 \times 10^3 N$	b) $16 \times 10^3 N$	c) $\frac{1}{4} \times 10^3 N$	d) $\frac{1}{16} \times 10^3 N$
	184. Two wires of the same forces to produce equa	length and same material		2 are stretched by unequal
	a) 1:1	b) 1:2	c) 2:3	d) 1:4
	185. One litre of a gas is ma volume becomes 900 c a) 0.106 Nm ⁻² and 0.1 c) 106.62 Nm ⁻² and 0.	cm ³ . The value of stress and	of mercury. It is compress d strain will be respectively b) 1.106 Nm^{-2} and 0.1 d) 10662.4 Nm^{-2} and	
	a) 0.01	b) 0.06	c) 0.02	d) 0.03
187. A wire of length L and cross-section A is made of material of Young's modulus Y . It is stretched by an amount x , the work done is YxA Yx^2A Yx^2A Yx^2A				
	a) $\frac{12A}{2L}$	b) $\frac{Yx^2A}{L}$	c) $\frac{Yx^2A}{2L}$	d) $\frac{2Yx^2A}{L}$
				nd three times the length of <i>B</i> . ion, the ratio of energy stored d) 6:1
			of the second se	gth and radius are reduced to
		oung's modulus will be		2
	a) Y/2	b) Y	c) 2Y	d) 4Y
	same load, the increase	of two wires of same mate e in length of thin wire will		nch wire is 4 m. On applying the
	a) n^2 times	b) n times	c) 2n times	d) $(2n + 1)$ times
	steel rod of length l_2 at a) $\alpha_1 l_2 = \alpha_2 l_1$ 192. The hollow shaft is	t 0°C, their difference in ler b) $\alpha_1 l_2^2 = \alpha_2 l_1^2$ than a solid shaft of same n b) More stiff nm by a force of 1 k N. How	(l_2-l_1) will remain the c) $\alpha_1^2l_1=\alpha_2^2l_2$ mass, material and length. c) Squally stiff α far would a wire of the same	te a brass rod of length l_1 and the same at a temperature if d) $\alpha_1 l_1 = \alpha_2 l_2$ d) None of these the material and length but of
	1	er be stretched by the sam		4
	a) $\frac{1}{2}$ mm	b) $\frac{1}{4}$ mm	c) $\frac{1}{8}$ mm	d) $\frac{1}{16}$ mm
	$Y_s(\text{steel}) = 2.0 \times 10^{11}$ $Y_c(\text{copper}) = 1.2 \times 10$	he elongation (l) of each w N/m^2 $^{11}N/m^2$	ire is	
	a) $l_s = 0.75cm, l_c = 1.$	25 <i>cm</i>	b) $l_s = 1.25 cm$, $l_c = 0$.	75 <i>cm</i>

	والمستوا فينفوا فينفوا فيستوا فيستوا فيستوا فينفوا فينفوا		المناز المتناز	والمتراوي
	c) $l_s = 0.25cm, l_c = 0.75c$	cm	d) $l_s = 0.75cm$, $l_c = 0.25c$	rm
195.	Two wires of the same ma	nterial (Young's modulus Y)	and same length L but rad	ii R and $2R$ respectively are
	joined end to end and a v	veight w is suspended froi	n the combination as shov	vn in the figure. The elastic
	potential energy in the sys	stem is		
	L, 2R			
	a) $\frac{3w^2L}{4\pi R^2Y}$	$3w^2I$	$5w^2I$	w^2I
	a) $\overline{4\pi R^2 Y}$	b) $\frac{3w^2L}{8\pi R^2 Y}$	c) $\frac{5w^2L}{8\pi R^2 Y}$	d) $\frac{w^2L}{\pi R^2 Y}$
196	Two wires are made of the	e same material and have t	he same volume. However	wire 1 has cross-sectional
150.		ss-sectional area 3 <i>A.</i> If the l		
		to stretch wire 2 by the sa		y an on applying force 17
	a) <i>F</i>	b) 4F	c) 6F	d) 9 <i>F</i>
197.	A spring is extended by 30	0 mm when a force of 1.5 N ically supporting a mass of		
	a) 0.01 J	b) 0.02 J	c) 0.04 J	d) 0.08 J
	State Proceedings of New Yorks	9	CONTO AND VICTORIA TO	5 0 T 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
198.	On applying a stress of 20 will be	$\times 10^{\circ} N/m^2$ the length of a	a perfectly elastic wire is do	oubled. Its Young's modulus
	a) $40 \times 108 M/m^2$	b) $20 \times 10^8 M/m^2$	a) $10 \times 10^8 M/m^2$	d) = × 108M/m2

a) $40 \times 10^{\circ} N/m^{2}$ b) $20 \times 10^{8} N/m^{2}$ c) $10 \times 10^{\circ} N/m^{2}$ 199. On increasing the length by 0.5 mm in a steel wire of length 2 m and area of cross-section 2 mm², the force required is [Y for steel = $2.2 \times 10^{11} \text{Nm}^{-2}$]

a) $1.1 \times 10^5 \text{N}$ b) 1.1×10^4 N c) $1.1 \times 10^3 \text{ N}$ 200. Which one of the following statements is correct? In the case of

b) $Y A \alpha \Delta t$

- a) Shearing stress there is change in volume
- b) Tensile stress there is no change in volume
- c) Shearing stress there is no change in shape
- d) Hydraulic stress there is no change in volume
- 201. According to Hooke's law force is proportional to

a)
$$\frac{1}{x}$$
 b) $\frac{1}{x^2}$ c) x

202. An area of cross-section of rubber string is $2cm^2$. Its length is doubled when stretched with a linear force of 2×10^5 dynes. The Young's modulus of the rubber in dyne/cm² will be

a)
$$4 \times 10^5$$
 b) 1×10^5 c) 2×10^5 d) 1×10^4

203. If the Young's modulus of the material is 3 times its modulus of rigidity, then its volume elasticity will be b) Infinity c) $2 \times 10^{10} \text{Nm}^{-2}$ d) $3 \times 10^{10} \text{Nm}^{-2}$

204. A metal bar of length L and area of cross-section A is clamped between two rigid supports. For the material of the rod, its Young's modulus is Y and coefficient of linear expansion is α . If the temperature of

material of the rod, its Young's modulus is
$$Y$$
 and coefficient of linear expansion is α . If the temperature of the rod is increased by Δt °C, the force exerted by the rod on the supports is

a) $Y AL \Delta t$ b) $Y A \alpha \Delta t$ c) $\frac{YL \alpha \Delta t}{t}$ d) $Y \alpha AL \Delta t$

205. A steel wire is of length 1m, area of cross-section 2 mm² ($Y = 2 \times 10^{11} \text{Nm}^{-2}$). How much energy is required for increasing its length by 2 mm.

a) 0.08 J b) 0.8 [c) 80 I d) 800 I

d) $1.1 \times 10^2 \text{ N}$

d) $Y \alpha AL \Delta t$

a) $Y AL \Delta t$

	· · · · · · · · · · · · · · · · · · ·	d from a wire of negligible in the mass is pulled	9	
re	leased, it performs simp	he harmonic motion of anging $n \times 10^9 \mathrm{Nm}^{-2}$, the value of	ular frequency 140 rad s ⁻¹	
a)		b) 2	c) 4.5	d) 5
207. Or	ne end of a uniform rod o	of mass m_1 , uniform area o	f cross section A is suspend	led from the roof and mass
-0.00	THE STATE OF THE PROPERTY OF T	other end. What is the stre	가입하다 (1907년 1일) 이 전에 보고 있었다. 이 시간	
a)	$(m_1 + m_2) g/A$	b) $(m_1 - m_2) g/A$	c) $\left[\frac{(m_1/2)+m_2}{A}\right]$ g	d) $\left[\frac{m_1 + (m_2/2)}{A}\right]$ g
		ly from one of its ends is st the wire by 1 mm. Then the	\$ 50 min	
	0.2 J	b) 10 J	c) 20 J	d) 0.1 J
	in a thing and a ministration of the same of the same and	oth 200 m shows a decreased of the ball is (Take $g=10$)		e bottom. The bulk modulu
		b) 2 $\times 10^9 \text{Nm}^{-2}$		
Th	ne stress at the break poi		900.000 (1990)	2007-99 (1007-99) 1007-99) 120-99) 1 00-99) 120-99
a)	$1.33 \times 10^{11} \text{Nm}^{-2}$	b) $1.33 \times 10^{12} \text{ Nm}^{-2}$	c) $2 \times 10^{10} \text{ Nm}^{-2}$	d) $3 \times 10^{10} \text{ Nm}^{-2}$
		er of the same material hav		
		done in the two wires will	378	8.57
a)	1:2	b) 1:4	c) 2:1	d) 1:1
212. W	hen a weight of $10\ kg$ is	suspended from a copper	wire of length 3 <i>metres</i> an	d diameter 0.4 mm, its
ler	ngth increases by 2.4 cm	. If the diameter of the wire	e is doubled, then the exter	nsion in its length will be
a)	9.6 cm	b) 4.8 cm	c) 1.2 cm	d) 0.6 cm
un		nit twist for a solid cylinder inder of same material witl		ANTE EN 1873
		b) 0.455 N-m	c) 0.91 N-m	d) 1.82 N-m
Yo	oung's modulus of elasti	N doubles the length of a rucity of the rubber band is	ubber band of cross-section	nal area $2 \times 10^{-4} \text{m}^2$. The
a)	$4 \times 10^7 \text{Nm}^{-2}$	b) 2 $\times 10^2 \text{ Nm}^{-2}$	c) 10 ⁷ Nm ⁻²	d) $0.5 \times 10^7 \text{ Nm}^{-2}$
	hich of the following rod rce?	ls of same material underg	oes maximum elongation v	when subjected to a given
216. A s	solid sphere of radius <i>r</i> r ontainer. A massless pisto ston to compress the liq	b) $L=1$ m, $d=1$ mm made of a material of bulk to on of area a floats on the su uid, the fractional change in	rface of the liquid. When a	mass <i>m</i> is placed on the
a)	Ka/mg	b) <i>Ka/3 m</i> g	c) Mg/3Ka	d) <i>M</i> g/ <i>Ka</i>
217. If a is	S is stress and Y is Young	g's modulus of material of a	wire, the energy stored in	the wire per unit volume
a)	$2S^2Y$	b) $\frac{S^2}{2V}$	c) $\frac{2Y}{S^2}$	d) $\frac{S}{2Y}$
218. A	wire of diameter 1mm b	reaks under a tension of 10	000 N. Another wire, of san	ne material as that of the
fir	st one, but of diameter 2	mm breaks under a tension	on of	
	500 N	b) 1000 N	c) 10000 N	d) 4000 N
219. Co	pefficient of isothermal e	lasticity $E_{ heta}$ and coefficient	of adiabatic elasticity $E_{oldsymbol{\phi}}$ a	re related by $(\gamma = C_p/C_v)$

a)	E_{θ}	=	γE_{α}

b)
$$E_{\phi} = \gamma E_{\theta}$$

c)
$$E_{\theta} = \gamma / E_{\phi}$$

b)
$$E_{\phi} = \gamma E_{\theta}$$
 c) $E_{\theta} = \gamma / E_{\phi}$ d) $E_{\theta} = \gamma^2 E_{\phi}$

220. The length of a rubber cord is l_1 metre when the tension is 4 N and l_2 metre when the tension is 6N. The length when the tension is 9 N, is

a)
$$(2.5l_2 - 1.5l_1)$$
m

b)
$$(6l_2 - 1.5l_1)$$
m

c)
$$(3l_2 - 2l_1)$$
m

d)
$$(3.5l_1 - 2.5l_1)$$
m

221. On all the six surfaces of a unit cube, equal tensile force of F is applied. The increase in length of each side will be $(Y = Young's modulus, \sigma = Poisson's ratio)$

a)
$$\frac{F}{Y(1-\sigma)}$$

b)
$$\frac{F}{Y(1+\sigma)}$$

c)
$$\frac{F(1-2\sigma)}{Y}$$

d)
$$\frac{F}{Y(1+2\sigma)}$$

222. The strain-stress curves of three wires of different materials are shown in the figure. P, Q and R are the elastic limits of the wires. The figure shows that

- a) Elasticity of wire P is maximum
- b) Elasticity of wire Q is maximum
- c) Tensile strength of R is maximum
- d) None of the above is true
- 223. The Young's modulus of a rubber string 8 cm long and density 1.5 kg/m^3 is $5 \times 10^8 N/m^2$, is suspended on the ceiling in a room. The increase in length due to its own weight will be

a)
$$9.6 \times 10^{-5} m$$

b)
$$9.6 \times 10^{-11} m$$

c)
$$9.6 \times 10^{-3} m$$

- d) 9.6 m
- 224. Two wires of the same material and length are stretched by the same force. Their masses are in the ratio 3:2. Their elongations are in the ratio

c)
$$2:3$$

d) 4:9

- 225. Why the spring is made up of steel in comparison of copper
 - a) Copper is more costly than steel
- b) Copper is more elastic than steel
- c) Steel is more elastic than copper
- d) None of the above
- 226. If the compressibility of water is σ per unit atmospheric pressure, then the decrease in volume (V) due to atmospheric pressure p will be

a)
$$\sigma p/V$$

b)
$$\sigma pV$$

c)
$$\sigma/pV$$

d)
$$\sigma V/p$$

227. The isothermal elasticity of a gas is equal to

- d) Specific heat
- 228. A wooden wheel of radius R is made of two semicircular parts (see figure). The two parts are held together by a ring made of a metal strip of cross sectional area S and length L. L is slightly less than $2\pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is α , and its Young's modulus is Y, the force that one part of the wheel applies on the other part is

- a) $2\pi SY \alpha \Delta T$
- b) $SY \alpha \Delta T$
- c) $\pi SY \alpha \Delta T$
- d) $2SY\alpha\Delta T$
- 229. A load W produces an extension of 1mm in a thread of radius r. Now if the load is made 4W and radius is made 2r all other things remaining same, the extension will become
 - a) 4 mm
- b) 16 mm
- c) 1 mm
- d) 0.25 mm

- 230. A body of mass m = 10 kg is attached to a wire of length 0.3 m. The maximum angular velocity with which it can be rotated in a horizontal circle is (Breaking stress of wire $=4.8 \times 10^7 \, \text{Nm}^{-2}$ and area of crosssection of a wire = 10^{-2} m²) a) 4 rads-1 b) 8 rads⁻¹ c) 1 rads⁻¹ d) 2 rads^{-1}
- 231. In the three states of matter, the elastic coefficient can be b) Coefficient of volume elasticity a) Young's modulus
- c) Modulus of rigidity d) Poisson's ratio 232. If the volume of a block of aluminium is decreased by 1%, the pressure (stress) on its surface is increased by (Bulk modulus of A1 = $7.5 \times 10^{10} \text{Nm}^{-2}$)
- a) $7.5 \times 10^{10} \text{Nm}^{-2}$ b) $7.5 \times 10^8 \text{Nm}^{-2}$ c) $7.5 \times 10^6 \text{Nm}^{-2}$ d) $7.5 \times 10^4 \text{Nm}^{-2}$ 233. The diagram shows the change x in the length of a thin uniform wire caused by the application of stress Fat two different temperatures T_1 and T_2 . The variation shown suggest that

- a) $T_1 > T_2$ c) $T_1 = T_2$ b) $T_1 < T_2$ d) None of these 234. The compressibility of water is 4×10^5 per unit atmospheric pressure. The decrease in volume of 100 cm³
- of water under a pressure of 100 atmosphere will be
 - a) $0.4 \, \text{cm}^3$
- b) 0.025 m^3
- c) $4 \times 10^5 \text{ cm}^3$
- d) 0.04 cm^3

- 235. Which of the following substance has the highest elasticity?
- b) Copper
- d) Sponge
- 236. The mass and length of a wire are M and L respectively. The density of the material of the wire is d. On applying the force F on the wire, the increase in length is l, then the Young's modulus of the material of the wire will be
 - a) $\frac{Fdl}{Ml}$

- b) $\frac{FL}{Mdl}$
- c) $\frac{FMl}{dl}$
- d) $\frac{FdL^2}{ML}$
- 237. Forces of 100 N each are applied in opposite directions on the upper and lower faces of a cube of side 20 cm. The upper face is shifted parallel to itself by 0.25 cm. If the side of the cube were 10 cm, then the displacement would be
 - a) 0.25 cm
- b) 0.5 cm
- c) 0.75 cm
- d) 1 cm
- 238. Which one of the following is the Young's modules (in N/m^2) for the wire having the stress-strain curve shown in the figure

- b) 8.0×10^{11}
- c) 10×10^{11}
- d) 2.0×10^{11}
- 239. A steel wire is stretched with a definite load. If the Young's modulus of the wire is Y. For decreasing the value of Y
 - a) Radius is to be decreased

b) Radius is to be increased

c) Length is to be increased

- d) None of the above
- 240. In a wire stretched by hanging a weight from its end, the elastic potential energy per unit volume in terms of longitudinal strain σ and modulus of elasticity Y is

	$Y\sigma^2$
a)	-2

b)
$$\frac{Y\sigma}{2}$$

c)
$$\frac{2Y\sigma^2}{2}$$

d)
$$\frac{Y^2\sigma}{2}$$

241. If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are a, b and c, respectively. The ratio between the increase in lengths of brass and steel wires would be

b)
$$\frac{bc}{2a^2}$$

d)
$$\frac{a}{2b^2a}$$

242. A metallic rod of length l and cross-sectional area A is made of a material of Young modulus Y. If the rod is elongated by an amount y, then the work done is proportional to

d) $\frac{1}{v^2}$

243. A 1m long steel wire of cross-sectional area 1 mm² is extended by 1 mm. If $Y = 2 \times 10^{11} \text{N m}^{-2}$, then the work done is

a) 0.1 J

b) 0.2 J

c) 0.3 J

244. A student plots a graph from his reading on the determination of Young's modulus of a metal wire but forgets to label. The quantities on X and Y axes may be respectively

a) Weight hung and length increased

b) Stress applied and length increased

c) Stress applied and strain developed

d) Length increased and weight hung

245. A spherical ball contract in volume by 0.01% when subjected to normal uniform pressure of 100 atmosphere. What is the bulk modulus of elasticity of the material of the ball? (Take 1 atmosphere = 10^6 dyne cm⁻³)

a) $10^9 \, \text{dyne cm}^{-2}$

b) 10^{10} dyne cm⁻² c) 10^{12} dyne cm⁻²

d) 10^{14} dyne cm⁻²

246. Young's modulus of the material of a wire is Y. On pulling the wire by a force F, the increase in its length is x. The potential energy of the stretched wire is

a) $\frac{1}{2}Fx$

b) $\frac{1}{2}Yx$

c) $\frac{1}{2}Fx^2$

d) None of these

247. There is no change in the volume of a wire due to change in its length on stretching. The Poisson's ratio of the material of wire is

a) +0.50

b) -0.50

c) +0.25

d) -0.25

248. A rectangular bar 2 cm in breadth and 1 cm in depth and 100 cm in length is supported at its ends and a load of 2 kg is applied at its middle. If Young's modulus of the material of the bar is $20 \times 10^{11} dyne \ cm^{-2}$, the depression in the bar is

a) 0.2450 cm

b) 0.3675

c) 0.1225 cm

d) 0.9800 cm

249. A substance breaks down by a stress of 10^6 Nm⁻². If the density of the material of the wire is $3 \times$ 10³ kgm⁻³, then the length of the wire of that substance which will break under its own weight when suspended vertically is nearly

a) 3.4 m	b) 34 m	c) 340 m	d) 3400 m
	6 kg at its one end, the inci		the radius of the wire is doubled
a) 6 mm	b) 3 mm	c) 24 mm	d) 48 mm
251. Bulk modulus was		20 0000 220	Approximate the second
a) Young	b) Bulk	c) Maxwell	d) None of the above
252. Modulus of rigidity		3.7	D.C. L.
a) Non zero consta		c) Zero	d) Can not be predicted
			energy in a stretched string is
a) Stress × Strain	of an ideal gas at constant t	Strain c) $2 \times Strain \times Strain$	ess d) Stress/Strain
a) Is equal to its vo	[[[[[[] [[] [[] [[] [[] [[] [[] [[] [[]	b) Is equal to $p/2$	
c) Is equal to its pr		d) Can not be deter	mined
	abatic to isothermal elastic		
		10E4	₁₃ 5
a) $\frac{3}{4}$	b) $\frac{4}{3}$	c) 1	d) $\frac{5}{3}$
256. The value of force of 30°	constant between the appli	ed elastic force F and displ	acement will be
O Displacement	· X		
a) $\sqrt{3}$	b) $\frac{1}{\sqrt{2}}$	c) $\frac{1}{2}$	d) $\frac{\sqrt{3}}{2}$
a) V3	$\sqrt{3}$	$\frac{c_j}{2}$	$\frac{u_j}{2}$
257. A wire fixed at the F	upper end stretches by leng	gth by applying a force <i>F.</i> T	he work done in stretching is
a) $\overline{2\Delta l}$	b) $F\Delta l$	c) $2F\Delta l$	d) $\frac{F\Delta l}{2}$
258. In above question,	the work done in the two w	vires is	
a) 0.5 J, 0.03 J	b) 0.25 J, 0 J	c) 0.03 J, 0.25 J	d) 0 J, 0 J
elongation of the re copper respectively	y?	hen ρ and Y are the density	and Young's modulus of the
a) $\frac{\rho^2 gL^2}{2V}$	b) $\frac{\rho gL^2}{2V}$	c) $\frac{\rho^2 g^2 L^2}{2V}$	d) $\frac{\rho gL}{2V}$
260. If work done in str	etching a wire by 1 mm is 2	I, the work necessary for s	stretching another wire of same
	double the radius and half l	71 6	D 4.6
a) ^{1/4}	b) 4	c) 8	d) 16
	ame material have lengths i		adii are in the ratio $1:\sqrt{2}$. If they be in the ratio
a) $\sqrt{2}:2$	b) 2 : √2	c) 1:1	d) 1:2
262. If the work done in	stretching a wire by 1 mm with double radius of cross	range and from a series of fifther and finished and finis	for stretching another wire of 1 by 1 mm is
1		c) 8 J	d) 16 J
a) $\frac{1}{4}$ J	b) 4 J	, , , ,	
263. Under elastic limit	the stress is		
a) Inversely, propo		b) Directly proport	tional to strain
c) Square root of s		d) Independent of	
SEESC 251		985 (254)	

264.	length of wire is	tal wire is T_1 , its length is	l_1 . When the tension is T_2 it	ts length is l_2 . The natural
	a) $\frac{T_2}{T_1}(l_1 + l_2)$	b) $T_1 l_1 + T_2 l_2$	c) $\frac{l_1T_2 - l_2T_1}{T_2 - T_1}$	d) $\frac{l_1T_2 + l_2T_1}{T_2 + T_1}$
265.	A wire of natural length l , stored in the wire is given		ea of cross-section A is exte	ended by x . Then the energy
		b) $\frac{1}{3} \frac{YA}{l} x^2$		
266.		m is hung from the ceiling liven Young's modulus of e		
	a) 1.5 mm	b) 6 mm	c) 24 mm	d) 96 mm
267.	keeping temperature cons	n is changed from $1.01 imes 10$ stant. The Bulk modulus of	the medium is	
268	a) 204.8×10^5 Pa In the above graph, point	b) 102.4 × 10 ⁵ Pa	c) $51.2 \times 10^5 Pa$	d) $1.55 \times 10^5 Pa$
		b) Limiting point	c) Yield point	d) None of the above
	a) $Y = 2\eta(1-2\sigma)$	b) $Y = 2\eta(1+2\sigma)$	- 경우를 보겠는다고 그런 ^^ (1) [1] [2] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CONTRACT CONTRACT CONTRACTOR STATE CONTR
270.	0.6 mm	ed to produce an increase of	of 0.2% in the length of a br	ass wire of diameter
	(Young's modulus for bra a) Nearly 17 N	15 OF 1	c) Nearly 51 N	d) Nearly 68 N
271.	A stress of 1 kg mm ² is app	[] [] [] [] [] [] [] [] [] []	_ 30 ta7a () Angg () San () Angg () San () Angg () San () San () Angg () San () Angg () San () Ang	is 10^{10} dyne cm ⁻² , then the
	a) 0.0098%	b) 0.98%	c) 9.8%	d) 98%
272.	The dimensions of four w will be maximum?	ires of the same material a	re given below. In which wi	ire the increase in length
	a) Length 100 cm, Diamete	er 1 mm	b) Length 200 cm, Diamet	er 2 mm
273.	c) Length 300 cm, Diamet Which of the following is	er 3 mm true for elastic potential en	d) Length 50 cm, Diamete ergy density	r 0.5 mm
	a) Energy density = 1/2	× strain × stress	b) Energy density = (stra	and the same of the same and the
274	c) Energy density = (stra		d) Energy density = (stre	
	of the material of the wire	eis	200 SEE	etching. The Poisson's ratio
	a) $+\frac{1}{2}$	b) $-\frac{1}{2}$	c) $+\frac{1}{4}$	d) $-\frac{1}{4}$
275.	A cube is subjected to a un strain is	niform volume compression		
276	a) 0.02 Which statement is true fo	b) 0.03	c) 0.04	d) 0.06
	a) $Y < \eta$	b) $Y = \eta$	c) $Y > \eta$	
277.	If E_{θ} and E_{φ} denote the is	othermal and adiabatic ela	sticities respectively of a ga	as, then $\frac{E_{\theta}}{E_{\phi}}$
	a) < 1	b) > 1	c) = 1	d) = 3.2
	1358	ects the elasticity of a subs	tance	

a) Hammering and ani		b) Change in temperati	ure
c) Impurity in substan		d) All of these	to provide the species of the specie
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			rial. Which of these will have
	when the same tension is a		
a) $L = 400 \text{ cm}, r = 0.8$		b) $L = 300$ cm, $r = 0.6$	
c) $L = 200 \text{ cm}, r = 0.4$		d) $L = 100$ cm, $r = 0.2$	
250	. 27 . 140 . 170 . 170	1574	the spring stretches by 2 cm.
a) 4.9 J		nt in stretching this spring b	d) 0.245 J
a) 4.91	b) 2.45 J	c) 0.495 J	aj 0.245 j
81. A work of 2×10^{-2} J is	done on a wire of length 5	0 cm and area of cross-sect	ion 0.5mm ² . If the Young's
		m^{-2} , then the wire must be	
a) Elongated to 50.141	4 cm	b) Contracted by 2.0 m	m
c) Stretched by 0.707	mm	d) Of length changed to	49.293 cm
82. A 100 N force stretche	s the length of a hanging w	ire by 0.5 mm. The force red	quired to stretch a wire, of the
same material and len	gth but having four times tl	ne diameter, by 0.5 mm is	
a) 100 N	b) 400 N	c) 1200 N	d) 1600 N
O Two identical wines on	the case	a wiaid assaurant but assa is a f	i annuan and the athenia of
		e rigid support but one is of	
_	the same level must be in		ed on copper and iron wires
	b) 2:1	c) 3:1	d) 4:1
a) 1:3	0) 2.1	() 3.1	u) 4 . 1
84. One end of uniform wi	re of length Land of weigh	t w is attached rigidly to a p	oint in the roof and a weight
			re, the stress in the wire at a
height $(3L/4)$ from its	lower end is		
a) $\frac{w_1}{s}$	v_1	.[.3w],	$w_1 + w$
a) s	b) $\left[w_1 + \frac{w}{4}\right]s$	c) $\left[w_1 + \frac{3w}{4} \right] / s$	d) $\frac{w_1 + w}{s}$
35. Which of the following	relations is true		
a) $3Y = K(1 - \sigma)$) - (CV + -)V	d) $\sigma = \frac{0.5Y - \eta}{\eta}$
a) $3Y = K(1 - \sigma)$	b) $K = \frac{1}{Y + \eta}$	c) $\sigma = (6K + \eta)Y$	a) $\sigma = \frac{\eta}{\eta}$
36. An iron rod of length 2	m and cross section area o	f $50mm^2$, stretched by $0.5n$	nm, when a mass of $250kg$ is
hung from its lower en	d. Young's modulus of the	iron rod is	
a) $19.6 \times 10^{10} N/m^2$	b) $19.6 \times 10^{15} N/m^2$	c) $19.6 \times 10^{18} N/m^2$	d) $19.6 \times 10^{20} N/m^2$
87. The following data we	re obtained when a wire wa	as stretched within the elas	tic region Force applied to
wire 100 N			
Area of cross-section	of wire 10^{-6} m ²		
Extensional of wire 2 >	< 10 ⁻⁹ m		
Which of the following	deductions can be correct	ly made from this data?	
I. The value of Young	g's Modulus is 10^{11} N m $^{-2}$		
II. The strain is 10^{-3}			
III. The energy stored	in the wire when the load i	s applied is 10 J	
a) 1, 2, 3 are correct	b) 1, 2 correct	c) 1 only	d) 3 only
OO If a law situadia al atuain	is any dress dia a voice of Vo		one atoms d in the meeting of
the wire per unit volur		oung's modulus y, then ener	gy stored in the material of
		, 1 ,	,, 1 ,
a) <i>yx</i> ²	b) $2 yx^2$	c) $\frac{1}{2}y^2x$	d) $\frac{1}{2}yx^2$
and the same of th			quired to break a wire, of the
same material, having	twice the length and six tin	nes the radius ?	

a) ^F	b) 3 F	c) 9 F	d) 36 F	
290. The Young's modulus of the material of a wire is $2 \times 10^{10} \text{Nm}^{-2}$. If the elongation strain is 1%, then the				
	ire per unit volume in Jm -:			
a) 10 ⁶	b) 10 ⁸	c) 2×10^6	d) 2×10^8	
291. The length of a wire is	increased by 1 mm on the a	application of a given load. I	n a wire of the same	
material, but of length	and radius twice that of the	first, on the application of t	the same load, extension is	
a) 0.25 cm	b) 0.5 cm	c) 2 mm	d) 4 mm	
292. The only elastic modul	us that annlies to fluids is			
a) Young's modulus	b) Shear modulus	c) Modulus of rigidity	d) Bulk modulus	
100		eaking force in the above qu		
a) 6F	b) 4 <i>F</i>	c) 8F	d) <i>F</i>	
Salaran in Carlo Carlo Salaran			im respectively. If the area of	
	Seed 1	rea of cross section of the se		
a) $6 mm^2$	b) 8 mm ²	c) $10 \ mm^2$	d) 12 mm ²	
295. A wire of length L and	radius a rigidly fixed at one	end. On stretching the other	er end of the wire with a force	
F, the increase in its le	ength is l . If another wire of	same material but of length	2L and radius $2a$ is	
stretched with a force	2F, the increase in its lengt	h will be		
a) <i>l/</i> 4	b) <i>l</i>	c) l/2	d) 2 <i>l</i>	
	ame to stretch the length by	1% of a wire with cross sec	tional area of $1mm^2$ will be	
$[Y=9\times 10^{11}N/m^2]$	"Word to ROUTE AND BROWNING"	65 (800) (MARKATANA)	as the Managara Managaran Asia	
a) $9 \times 10^{11} J$		c) $9 \times 10^7 J$	The state of the s	
297. Two wires of equal len				
a) Four times for wire		te ends of these wires, the in b) Twice for wire A as for	- 12 Control of the c	
c) Half for wire A as for		d) One-fourth for wire A		
298. The diagram shows a f		그는 그 그 항상에 빠르면 얼마 없어요요요 그렇게 되었었다. 하나 아이들 바닷컴에서 아내가 되었었다.		
	mpress this rubber than ex		one wing statements	
	urn to its original length aft			
	ill get heated if it is stretche			
Which of these can be	deduced from the graph			
↑	2006-000-000-000-000-000-000-000-000-000			
5				
Extension				
Ž /				
\longrightarrow				
Force	FA II 3 III	-2 1 1111	3) L	
a) III only	b) II and III	c) I and III	d) I only	
299. The extension in a string	is increased to 1.5 x , the sp	- (1985년) [1일 - 1일 [1일 조보 1982년 1982년 1일	stretched string is ν . If the	
a) $1.22 v$	b) 0.61 <i>v</i>	c) 1.50 v	d) 0.75 v	
253-0		ross-sectional area 1 mm ⁻²	0.00	
increase the length by		1033 Sectional area 1 mm	. The work required to	
a) 0.4 J	b) 4 J	c) 40 J	d) 400 J	
	control of	20 CONTRACTOR (CONTRACTOR CONTRACTOR CONTRAC		
		netre long wire of cross-sec	tional area 1mm² through 1	
mm will be $(Y = 2 \times 1)$	50	a) 10 I	J) 250 I	
a) 0.1 J	b) 5 J	c) 10 J	d) 250 J	

302. The pressure ap	plied from all directions or	a cube is P. How much its	temperature should be raise	ed to
maintain the ori	ginal volume? The volume	elasticity of the cube is β ar	nd the coefficient of volume	
expansion is α				
$\frac{P}{}$	b) $\frac{P\alpha}{R}$	c) <u>Pβ</u>	d) $\frac{\alpha\beta}{R}$	
a) $\frac{1}{\alpha\beta}$	$\frac{\beta}{\beta}$	$\frac{c}{\alpha}$	$\frac{u_j}{P}$	
303. The increases in	length is l of a wire of length	$\operatorname{sth} L$ by the longitudinal str	ess. Then the stress is propo	rtional
to				
a) I /I	b) 1/1	$c) 1 \times 1$	d) $I^2 \times I$	

304. A wire fixed at the upper end stretches by length *l* by applying a force *F*. The work done in stretching is

d) $\frac{Fl}{2}$ b) Fl c) 2Fl 305. The Young's modulus of the material of a wire is equal to the

b) Stress required to produce unit strain a) Stress required to increase its length four times c) Strain produced in it d) Half the strain produced in it

306. A gas has Bulk modulus K and natural density ρ . If pressure p is applied, what is change in density?

307. A rod of length l and radius r is joined to a rod of length $\frac{1}{2}$ and radius r/2 of same material. The free end of small rod is fixed to a rigid base and the free end of larger rod is given a twist of θ^0 , the twist angle at the joint will be

c) $\frac{5\theta}{\epsilon}$ a) $\frac{\theta}{4}$ b) $\frac{\theta}{2}$

308. If the shear modulus of a wire material is 5.9×10^{11} dyne cm⁻² then the potential energy of a wire of 4×10^{11} 10^3 cm in diameter and 5 cm long twisted through an angle of 10° , is

a) $1.253 \times 10^{-12} \text{ J}$ b) 2.00×10^{-12} J c) 1.00×10^{-12} J d) 0.8×10^{-12} J

309. The graph shows the behaviour of a length of wire in the region for which the substance obeys Hooke's law. P and Q represent

a) P = applied force, Q = extensionb) P = extension, Q = applied force

c) P = extension, Q = stored elastic energyd) P = stored elastic energy, Q = extension

310. A uniform slender rod of length L, cross-sectional area A and Young's modulus Y is acted upon by the forces shown in the figure. The elongation of the rod is

311. A cube of aluminium of sides 0.1 m is subjected to a sharing force of 100 N. The top face of the cube is

displaced through 0.02 cm with respect to the bottom face. The shearing strain would be b) 0.1 c) 0.005

312. A steel ring of radius r and cross-section area A' is fitted on to a wooden disc of radius R(R > r). If Young's modulus be E, then the force with which the steel ring is expanded is

b) $AE\left(\frac{R-r}{r}\right)$ c) $\frac{E}{A}\left(\frac{R-r}{A}\right)$ d) $\frac{Er}{AR}$ a) $AE \frac{R}{R}$

9.000		petween A and B without the retched like ACB , then the t	e application of any tension. If Y
as the roung's modi	R	reiched fike ACB, then the t	ension in the wire will be
d d			
v c			100
a) $\frac{\pi r^2 Y d^3}{2L^2}$	b) $\frac{\pi r^2 Y d^2}{2L^2}$	c) $\frac{\pi r^2 Y. 2L^2}{d^2}$	d) $\frac{\pi r^2 Y. 2L}{d}$

a) stress
$$\times$$
 strain b) $\frac{1}{2}$ (stress \times strain) c) stress/srain d) Strain/stress

315. A 5 m long aluminium wire $Y = 7 \times 10^{10} \text{ Nm}^{-2}$) of diameter 3 mm supports a 40 kg mass. In order to have the same elongation in the copper wire $(Y = 12 \times 10^2 \text{Nm}^{-2})$ of the same length under the same weight, the diameter should now be (in mm)

316. A copper wire of length 4.0m and area of cross-section $1.2cm^2$ is stretched with a force of $4.8 \times 10^3 N$. If Young's modulus for copper is $1.2 \times 10^{11} N/m^2$, the increase in the length of the wire will be

317. The relation between γ , η and K for a elastic material is

a)
$$\frac{1}{\eta} = \frac{1}{3\gamma} + \frac{1}{9K}$$
 b) $\frac{1}{K} = \frac{1}{3\gamma} + \frac{1}{9\eta}$ c) $\frac{1}{\gamma} = \frac{1}{3K} + \frac{1}{9\eta}$ d) $\frac{1}{\gamma} = \frac{1}{3\eta} + \frac{1}{9K}$

318. A solid block of silver with density 10.5×10^3 kg m⁻³ is subjected to an external pressure of 10^7 Nm⁻². If the bulk modulus of silver is $17 \times 10^{10} \text{ Nm}^{-2}$, the change in density of silver (in kg m⁻³) is

a) 0.61 b) 1.7 c) 6.1 d)
$$17 \times 10^3$$

319. A 1 m long wire is stretched without tension at 30°C between two rigid supports. What strain will be produced in the wire if the temperature falls to 0°C?

(Given:
$$\alpha = 12 \times 10^{-6} \text{ K}^{-1}$$
)
a) 36×10^{-5} b) 64×10^{-5} c) 0.78 d) 0.32

320. Two wires of equal cross-section but one made of steel and the other of copper are joined end to end. When the combination is kept under tension, the elongations in the two wires are found to be equal. What is the ratio of the lengths of the two wires? (Given: steel = $2 \times 10^{11} \text{Nm}^{-2}$)

321. When a rubber cord is stretched, the change in volume with respect to change in its linear dimensions is negligible. The Poisson's ratio for rubber is

322. A metal rod of Young's modulus 2 \times 10¹⁰ Nm⁻² undergoes an elastic strain of 0.06%. The energy per unit volume stored in J m⁻³ is

volume stored in J m
$$^{-3}$$
 is
a) 3600 b) 7200 c) 10800 d) 14400

323. A copper wire of negligible mass, 1 m length and cross-sectional area 10^{-6} is kept on a smooth horizontal table with one end fixed. A ball of mass 1 kg is attached to the other end. The wire and the ball are rotated

table with one end fixed. A ball of mass 1 kg is attached to the other end. The wire and the ball are rotated with an angular velocity 20 rad
$$s^{-1}$$
. If the elongation in the wire is 10^{-3} m, then the Young's modulus is a) 4×10^{11} Nm⁻² b) 6×10^{11} Nm⁻² c) 8×10^{11} Nm⁻² d) 10×10^{11} Nm⁻²

324. The mean distance between the atoms of iron is
$$3 \times 10^{-10} m$$
 and interatomic force constant for iron is $7N/m$. The Young's modulus of elasticity for iron is a) $2.33 \times 10^5 N/m^2$ b) $23.3 \times 10^{10} N/m^2$ c) $233 \times 10^{10} N/m^2$ d) $2.33 \times 10^{10} N/m^2$

325 Two wires 4 and 8 of sa	ame length, same area of cro	ss-section having the same	Young's modulus are			
	325. Two wires A and B of same length, same area of cross-section having the same Young's modulus are heated to the same range of temperature. If the coefficient of linear expansion of A is 3/2 times of that of					
(1) 보기 () () 이렇게 하셨다면 했다면 했다. 그 나에 가면 이 없었다면 그렇게 했다면 되었다면 하다.	forces produced in two wire	하나 하는 하는 하는 것들이 있는 것 같아. 그 사람이 되어 있다면 하는 것이 없는 것이 없는 것이 없는 것이다.				
a) 2/3	b) 9/4	c) 4/9	d) 3/2			
326. Four wires of the same	material are stretched by the	e same load. Which one of t	them will elongate most if			
their dimensions are as	follows					
a) $L = 100$ cm, $r = 1$ mm		b) $L = 200$ cm, $r = 3$ mm				
c) $L = 300$ cm, $r = 3$ mm		d) $L = 400$ cm, $r = 4$ mm				
327. Which is correct relation		31 SS	200			
a) $Y < \sigma$	b) $Y > \sigma$	c) $Y = \sigma$	d) $\sigma = +1$			
328. A wire of length L and r			0.77			
force 4F. The increase i	ses by l . Another wire of the	e same material of length 4	L, radius 47 is pulled by a			
I little 47. The increase i	ii lengtii wiii be					
a) $\frac{1}{2}$	b) <i>l</i>	c) 2l	d) 4 <i>l</i>			
000 00 0 1 1						
329. The figure shows the str	ress-strain graph of a certair	i substance. Over which re	gion of the graph is Hook's			
Law obeyed?						
\mathcal{A}						
Stress						
\int_{C}						
D						
O ✓ → Strain						
a) <i>BC</i>	b) <i>CD</i>	c) <i>AB</i>	d) <i>OD</i>			
330. The area of cross section	n of a steel wire $(Y = 2.0 \times 1)$	$10^{11}N/m^2$) is $0.1cm^2$. The	force required to double its			
length will be						
a) $2 \times 10^{12} N$	b) $2 \times 10^{11} N$	c) $2 \times 10^{10} N$	d) $2 \times 10^6 N$			
331. If a rubber ball is taken	(A)					
a) 10^8	and $g = 10 \text{ m/s}^2$, then the v b) 2×10^8					
332. If Young's modulus of el		c) 10 ⁹	d) 2×10^9			
ratio σ will be	ascicity 7 for a material is of	ile and han diffes its rigidit	y coefficient 11, the roisson's			
	1	, 1	. 2			
a) $+\frac{2}{3}$	b) $-\frac{1}{4}$	c) $+\frac{1}{4}$	d) $-\frac{2}{3}$			
333. One end of steel wire is	fixed to ceiling of an elevato	r moving up with an accele	eration 2 ms^{-2} and a load of			
10 kg hangs from other	end. Area of cross-section o	f the wire is 2 cm ² . The lon	gitudinal strain in the wire			
is						
(Take $g = 10 \text{ ms}^{-2}$ and	$Y = 2 \times 10^{11} \text{ Nm}^{-2}$					
a) 4×10^{11}	b) 3×10^{-6}	c) 8×10^{-6}	d) 2×10^{-6}			
334. A wire of length 2 m is r	nade from 10 cm^3 of copper	. A force F is applied so tha	at its length increases by			
	ength 8 m is made from the					
its length will increase h	AND					
a) 0.8 cm	b) 1.6 <i>cm</i>	c) 2.4 <i>cm</i>	d) 3.2 <i>cm</i>			
335. Steel and copper wires	pper are $2 \times 10^{11} N/m^2$ and					
			d) $\frac{5}{2}$			
a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\frac{5}{4}$				
336. The length of an elastic	요 (^ ^ ^ ^ ^ ^ ^ ^ ^) 이 이번, 프램 의료 및 아이트	[2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	metres when the 5 N force			
	gth of the spring when the 9		d) 4 a . E !-			
a) $a + b$	b) 9 <i>b</i> - 9 <i>a</i>	c) $5b - 4a$	d) 4a - 5b			

			crease in length is $(Y = 10^{11} N/m^2)$
a) 0.002	b) 0.001	c) 0.003	d) 0.01
		it can hold the load	D O f d
a) Half	b) Same	c) Double	d) One fourth
		rial of bulk modulus Kis sur	the liquid. When a mass M is
		the fractional change in the	
a) $\frac{Mg}{AK}$	b) $\frac{Mg}{3AK}$	c) $\frac{3Mg}{AK}$	d) $\frac{Mg}{2AK}$
	sticity is dimensionally eq		7 2222
 a) Surface tension 	b) Stress	c) Strain	d) None of these

MECHANICAL PROPERTIES OF SOLIDS

						: ANS	W	ER K	EY:						
1)	а	2)	b	3)	a	4)	a	161)	c	162)	d	163)	b	164)	j
5)	d	6)	a	7)	b	8)	d	165)	c	166)	d	167)	a	168)	
9)	d	10)	b	11)	C	12)	a	169)	C	170)	d	171)	c	172)	
13)	d	14)	b	15)	C	16)	b	173)	b	174)	c	175)	C	176)	
17)	b	18)	a	19)	C	20)	b	177)	C	178)	a	179)	d	180)	
21)	a	22)	a	23)	a	24)	с	181)	C	182)	a	183)	b	184)	ŝ
25)	a	26)	c	27)	C	28)	d	185)	d	186)	d	187)	C	188)	
29)	b	30)	a	31)	b	32)	b	189)	b	190)	a	191)	d	192)	
33)	d	34)	d	35)	c	36)	b	193)	d	194)	a	195)	c	196)	
37)	d	38)	С	39)	b	40)	d	197)	c	198)	b	199)	d	200)	
41)	b	42)	a	43)	d	44)	c	201)	c	202)	b	203)	b	204)	
45)	a	46)	a	47)	d	48)	a	205)	b	206)	a	207)	c	208)	
49)	d	50)	c	51)	a	52)	С	209)	b	210)	d	211)	a	212)	
53)	b	54)	c	55)	b	56)	b	213)	b	214)	c	215)	C	216)	9
57)	a	58)	b	59)	a	60)	b	217)	b	218)	d	219)	b	220)	1
61)	b	62)	a	63)	a	64)	a	221)	c	222)	d	223)	b	224)	
65)	d	66)	a	67)	b	68)	b	225)	c	226)	b	227)	c	228)	
69)	c	70)	a	71)	a	72)	a	229)	c	230)	a	231)	b	232)	
73)	a	74)	a	75)	c	76)	c	233)	a	234)	a	235)	a	236)	9
77)	b	78)	a	79)	d	80)	b	237)	b	238)	d	239)	d	240)	1
81)	b	82)	a	83)	d	84)	b	241)	d	242)	c	243)	a	244)	
85)	С	86)	b	87)	С	88)	с	245)	С	246)	a	247)	a	248)	3
89)	С	90)	d	91)	c	92)	b	249)	b	250)	b	251)	С	252)	- 19
93)	b	94)	b	95)	d	96)	с	253)	b	254)	c	255)	b	256)	3
97)	d	98)	b	99)	a	100)	b	257)	d	258)	a	259)	d	260)	
101)	d	102)	b	103)	d	104)	b	261)	c	262)	d	263)	b	264)	
105)	b	106)	С	107)	b	108)	8332	265)	a	266)	d	267)	d	268)	9
109)	c	110)	a	111)	d	112)	a	269)	d	270)	c	271)	b	272)	- 8
113)	b	114)	a	115)	d	116)	0.50	273)	a	274)	b	275)	d	276)	
117)	b	118)	c	119)	a	120)	- 1	277)	a	278)	d	279)	d	280)	3
121)	c	122)	d	123)	a	124)		281)	c	282)	d	283)	a	284)	
125)	c	126)	d	127)	b	128)	- 1	285)	d	286)	a	287)	b	288)	
129)	a	130)	b	131)	b	132)	70000	289)	d	290)	a	291)	b	292)	
133)	d	134)	c	135)	c	136)		293)	b	294)	b	295)	b	296)	
137)	a	138)	c	139)	a	140)		297)	d	298)	a	299)	a	300)	1000
141)	b	142)	d	143)	d	144)		301)	a	302)	a	303)	b	304)	
145)	c	146)	d	147)	d	148)		305)	b	306)	c	307)	d	308)	- 1
149)	d	150)	b	151)	a	152)	1000	309)	c	310)	d	311)	d	312)	0.000
153)	b	154)		155)	a C	156)	6511	313)	b	314)	b	315)	c	316)	
133	d	158)	c c	159)	c	160)		317)	d	318)	a	319)	a	320)	ment, men

r															
ŀ															-
į															į
į	321)	C	322)	а	323)	а	324)	d 337)	b	338)	b	3391	b	340)	b !
ł	325)	d	326)	a	327)	b	328)	ь		,					i
F	329)	d	330)	d	331)	d	332)	b							
į	333)	b	334)	d d	335)	b	336)	С							į
i															i
ŀ															
į															Ì
i															j
ł															ł
ı															Į.
i															į
i															1
ŀ															
į															ĵ
i															i
ļ															!
į															į.
i															i
ŀ															ŀ
į															Ì
i															i
ļ															
İ															Ì
ij															į.
l															ŀ
ļ															ļ
į															į
ł															i
- 1															!
į															į
ł															;
- !															!
į															į
ł															i
ŀ															
į															į
į															ì
- 1															
ļ															Ì
j,															į
ł															
ļ															ļ
į															į
ł															
ļ															Î
į															į
ł															ľ
L															;
_				_				CHICK II	EDE (

MECHANICAL PROPERTIES OF SOLIDS

: HINTS AND SOLUTIONS :

1 (a)

$$Y = 3K(1 - 2\sigma), Y = 2\eta(1 + \sigma)$$

For $Y = 0$, we get $1 - 2\sigma = 0$, also $1 + \sigma = 0$
 $\Rightarrow \sigma$ lies between $\frac{1}{2}$ and -1

2 **(b)**

$$W = \frac{1}{2} \times F \times l = \frac{1}{2} mgl = \frac{1}{2} \times 10 \times 10 \times 1 \times 10^{-3}$$

$$= 0.05 I$$

$$U = \frac{1}{2} \times \text{stress} \times \text{strain}$$

From definition of Young's modulus of wire

$$Y = \frac{\text{stress}}{\text{strain}}$$

4

$$\Rightarrow$$
 stress = Y × strain

Given, strain = X

Therefore,
$$U = \frac{1}{2} \times YX^2$$

$$\Rightarrow U = 0.5 YX^2$$

5 **(d)** Increase in length due to rise in temperature $\Delta L =$

As
$$Y = \frac{FL}{A\Delta L}$$
, so, $F = \frac{YA\Delta l}{L} = \frac{YA \times aL\Delta T}{L} = YAa\Delta T$
 $\therefore F = 2 \times 10^{11} \times 10^{-6} \times 1.1 \times 10^{-5} \times 20 = 44 \text{ N}.$

6 (a)

When strain is small, the ratio of the longitudinal stress to the corresponding longitudinal strain is called the Young's modulus (Y) of the material of the body.

$$Y = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{l/L}$$

Where *F* is force, *A* the area, *l* the change in length and *L* the original length.

$$\therefore Y = \frac{FL}{\pi r^2 I}$$

r being radius of the wire.

Given
$$r_2 = 2r_1$$
, $L_2 = 2L_1$, $F_2 = 2F_1$

Since, Young's modulus is a property of material, we have

$$Y_1 = Y_2$$

$$\therefore \frac{F_1 L_1}{\pi r_1^2 l_1} = \frac{2F_1 \times 2L_1}{\pi (2r_1)^2 l_2}$$

$$l_2 = l_1 = l$$

Hence, extension produced is same as that in the other wire.

(b) Stress = $\frac{\text{force}}{\text{Area}}$: Stress $\propto \frac{1}{\pi r^2}$ $\frac{S_B}{S_A} = \left(\frac{r_A}{r_B}\right)^2 = (2)^2 \Rightarrow S_B = 4S_A$

(d) $A = 10^{-6}m^{2}$ $Y = \frac{\left(\frac{T}{A}\right)}{\frac{\Delta l}{l}} = \frac{\left(\frac{100}{10^{-6}}\right)}{\left(\frac{0.1}{100}\right)} = \frac{100}{10^{-6}} \times \frac{100}{0.1} = \frac{10^{4}}{10^{-7}}$ $= 10^{11}N/m^{2}$

L be original length of the wire

When a mass M_1 is suspended from the wire, change in length of wire is $\Delta L_1 = L_1 - L$ When a mass M_2 is suspended from it, change in length of wire is $\Delta L_2 = L_2 - L$ From figure (b), $T_1 = M_1 g$...(i)
From figure (c), $T_2 = M_2 g$...(ii)
As young's modulus, $Y = \frac{T_1 L}{A\Delta L_1} = \frac{T_2 L}{A\Delta L_2}$ $\frac{T_1}{\Delta L_1} = \frac{T_2}{\Delta L_2} \Rightarrow \frac{T_1}{L_1 - L} = \frac{T_2}{L_2 - L}$ $\frac{M_1 g}{\Delta L_1} = \frac{M_2 g}{\Delta L_2}$ [Using (i) and (ii)]

 $M_1(L_2-L)=M_2(L_1-L)$

$$M_1L_2 - M_1L = M_2L_1 - M_2L$$

$$M_1L_2 - M_1L = M_2L_1 - M_2L$$

$$L(M_2 - M_1) = L_1M_2 - L_2M_1 \Rightarrow L = \frac{L_1M_2 - L_2M_1}{M_2 - M_1}$$

Adiabatic elasticity $E = \gamma P$

For argon $E_{Ar} = 1.6 P$

For hydrogen $E_{H_2} = 1.4P'$...(ii)

As elasticity of hydrogen and argon are equal

$$\therefore 1.6P = 1.4P' \Rightarrow P' = \frac{8}{7}P$$

11 (c)

$$l = \frac{FL}{AY} \Longrightarrow l \propto \frac{L}{r_2} \Longrightarrow \frac{l_1}{l_2} = \frac{L_1}{L_2} \times \frac{r_2^2}{r_1^2}$$

or
$$\frac{l_1}{l_2} = \frac{1}{2}$$

Therefore, strain produced in the two wires will be in the ratio 1:2.

12 (a)

$$Y = \frac{Fl}{A\Delta l} \text{ or } \Delta l \propto \frac{F}{r^2}$$

Or
$$\frac{\Delta l_2}{\Delta l_1} = \frac{F_2}{F_1} \times \frac{r_1^2}{r_2^2}$$

Or
$$\frac{\Delta l_2}{\Delta l_1} = 2 \times 2 \times 2 = 8$$

Or
$$\Delta l_2 = 8\Delta l_1 = 8 \times 1 \text{ mm} = 8 \text{ mm}$$

$$K = \frac{pV}{\Delta V} = \frac{pV}{\gamma \Delta T} = \frac{p}{3\alpha T}$$
 or $T = \frac{p}{3K\alpha}$

$$K = \frac{100}{0.01/100} = 10^6 atm = 10^{11} N/m^2$$
$$= 10^{12} dyne/cm^2$$

16 **(b)**

Work done in stretching the wire

$$W = \frac{1}{2} \times \text{force constant } \times x^2$$

For first wire, $W_1 = \frac{1}{2} \times kx^2 = \frac{1}{2}kx^2$

For second wire, $W_2 = \frac{1}{2} \times 2k \times x^2 = kx^2$

 $W_2 = 2W_1$ Hence,

$$B = \frac{\Delta P}{\Delta V/V} \Rightarrow \frac{1}{B} \propto \frac{\Delta V}{V} \quad [\Delta p = \text{constant}]$$

$$\tau = \frac{\pi \eta r^4}{2l} \ \theta$$

In the given problem, $r^4\theta$ = constant

$$\therefore \frac{\theta_{\rm A}}{\theta_{\rm B}} = \frac{r_2^4}{r_1^4}$$

Young's modulus of wire depends only on the nature of the material of the wire

For most materials, the modulus of rigidity, G is one third of the Young's modulus, y

$$G = \frac{1}{3}\gamma$$
 or $\gamma = 3G$

$$\therefore n = 3$$

22 (a)

$$L = 1 \text{ m} = 100 \text{ cm}$$

$$A = 1 \text{ cm}^2$$

$$Y = 10^{12} \text{ dyne cm}^{-2}$$

$$l = 1 \times 10^{-1} \text{ cm}$$

Force,
$$F = \frac{AYl}{L} = \frac{1 \times 10^{12} \times 10^{-1}}{100}$$

$$=10^9$$
 dyne

23 (a)

strain =
$$\frac{r}{l} \phi \frac{2 \times 10^{-3}}{1} \times 45^{\circ} = 0.9$$

$$B = \frac{P}{\Delta V/V}$$

$$\frac{\Delta V}{V} = \frac{P}{P}$$

$$\overline{V} = \overline{B}$$

$$=\frac{\rho gh}{B}=1.36\%$$

25

Let us consider the length of wire as L and crosssectional area A, the material of wire has Young's modulus as Y.

Then for 1st case $Y = \frac{W/A}{1/L}$

For 2 nd case,
$$Y = \frac{\frac{W}{A}}{\frac{2l'}{L}}$$

$$\therefore l' = \frac{l}{2}$$

So, total elongation of both sides = 2l' = l

26

The density would increase by 0.1% if the volume decrease by 0.1%

$$K = \frac{\Delta p}{\Delta V/V}$$

$$\Delta V = K \frac{\Delta V}{V} = 2 \times 10^9 \times \frac{0.1}{100} = 2 \times 10^6 \text{ Nm}^{-2}$$

$$\sigma = \frac{\text{lateral strain}}{\text{longitudinal strain}} \Rightarrow 0.5 = \frac{\text{lateral strain}}{0.03}$$

 \Rightarrow Lateral strain= $0.5 \times 0.03 = 0.015$

Poisson's ratio varies between −1 and 0.5

Young's modulus $Y = \frac{F}{A} \cdot \frac{L}{L}$

$$Force F = \frac{AYl}{L} = \frac{AY[2\pi(R-r)]}{2\pi r}$$

$$F = \frac{AY(R-r)}{r}$$

30 (a)

$$E = \frac{FL}{\pi r^2 \Delta L} \text{ or } \Delta L = \frac{FL}{\pi r^2 E}$$

$$r\theta = L\phi \Rightarrow 10^{-2} \times 0.8 = 2 \times \phi \Rightarrow \phi = 0.004$$

Angle of shear
$$\phi = \frac{r}{l}\theta = \frac{0.4}{100} \times 30 = 0.12^{\circ}$$

At extension l_1 , the stored energy = $\frac{1}{2}Kl_1^2$

At extension l_2 , the stored energy = $\frac{1}{2}Kl_2^2$

Work done in increasing its extension from l_1 to l_2 42 (a)

$$=\frac{1}{2}K(l_2^2-l_1^2)$$

Elastic energy stored in the wire is

$$U = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$
$$= \frac{1}{2} \times \frac{F}{4} \times \frac{\Delta l}{l} \times Al$$

$$=\frac{1}{2}F\Delta l$$

$$=\frac{1}{2} \times 200 \times 1 \times 10^{-3} = 0.1 \text{ J}$$

$$Y = \frac{F}{\pi r^2} \times \frac{L}{\Delta L} = \frac{F \times 2L}{x(r/2)^2 \Delta L}$$
 or $\frac{\Delta L}{\Delta L'} = \frac{1}{8}$

$$k = \frac{10 \text{ N}}{40 \times 10^{-3} \text{m}} = \frac{1000}{4} \text{ Nm}^{-1} = 250 \text{ Nm}^{-1}$$

Spring constant of combination

$$=\frac{250}{2}$$
 Nm⁻¹ = 125 Nm⁻¹

Energy =
$$\frac{1}{2} \times 125 \times (40 \times 10^{-3})^2 \text{ J} = 0.1 \text{ J}$$

37 (d)

Coefficient of elasticity in increasing order is

Rubber<Glass<Copper<Steel.

The Bulk modulus is given by

$$B = -\frac{pV}{\Delta V}$$

If liquid is incompressible, so

$$\Delta V = 0$$

Hence,
$$B = -\frac{pV}{0} = \infty \implies B = \infty$$
 (infinity)

39

Because strain is a dimensionless and unitless

40 (d)

$$F = \frac{YAl}{L} = \frac{2.2 \times 10^{11} \times 2 \times 10^{-6} \times 5 \times 10^{-4}}{2}$$
$$= 1.1 \times 10^{2} N$$

$$E = \frac{1}{2} \, \frac{YA/\Delta l^2}{l}$$

But
$$m = Ald$$
 or $A = \frac{m}{ld}$

$$\therefore E = \frac{Ym\Delta l^2}{2l^2d}$$

$$E \text{ in calorie} = \frac{Ym\Delta l^2}{2l^2d}$$

Now,
$$mS\theta = \frac{\text{Ym}\Delta l^2}{2l^2 dJ}$$
 or $\theta = \frac{\text{Y}\Delta l^2}{2l^2 dJS}$

Or
$$\theta = \frac{12 \times 10^{11} \times 10^{-1} \times 10^{-3} \times 10^{-3}}{2 \times 2 \times 2 \times 9 \times 10^{3} \times 4.2 \times 0.1 \times 10^{3}}$$

= $\frac{12 \times 10^{5}}{72 \times 42 \times 10^{5}} = \frac{1}{252}$ °C

$$= \frac{12 \times 10^5}{72 \times 42 \times 10^5} = \frac{1}{252} \, ^{\circ}\text{C}$$

$$l = \frac{FL}{\pi r^2 Y} :: l \propto \frac{L}{r^2} [Y \text{ and } F \text{ are constant}]$$

$$\frac{l_2}{l_1} = \frac{L_2}{L_1} \times \left(\frac{r_1}{r_2}\right)^2 = (2) \times \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$

$$\Rightarrow l_2 = \frac{l_1}{2} = \frac{0.01m}{2} = 0.005m$$

43 (d)

$$Stress = \frac{Force}{area}$$

In the present case, force applied and area of cross-section of wires are same, therefore stress has to be the same

$$Strain = \frac{Stress}{Y}$$

Since the Young's modulus of steel wire is greater than the copper wire, therefore, strain in case of steel wire is less than that in case of copper wire

$$\eta = \frac{F}{A\theta} = \frac{5 \times 10^5}{100 \times 10^{-4} \times 0.001} = 5 \times 10^{10} \text{Nm}^{-2}$$

$$\frac{dV}{V} = (1 + 2\sigma)\frac{dL}{dL}$$

If
$$\sigma = -\frac{1}{2}$$
 then $\frac{dV}{V} = 0$ i. e. $K = \infty$

Poisson's ratio is 0.5 so there is no change in the volume.

$$Y = \frac{FL}{Al} = \frac{1000 \times 100}{10^{-6} \times 0.1} = 10^{12} N/m^2$$

$$K = \frac{p}{-\frac{\Delta V}{V}} \Rightarrow K = \frac{h\rho g}{0.1 \times 10^{-2}}$$
$$\Rightarrow h = \frac{K \times 0.1 \times 10^{-2}}{\rho g} = \frac{9 \times 10^8 \times 10^3}{10^3 \times 10} = 90 \text{ m}$$

50 (c)

Increase in length $l = \frac{FL}{AY}$

or
$$l = \frac{FL}{\pi r^2 Y}$$

Percent increase in length

$$\Delta x = \frac{l}{L} \times 100 = \frac{F}{\pi r^2 Y}$$

Here, same longitudinal force is applied.

So,
$$\frac{\Delta x_1}{\Delta x_2} = \left(\frac{r_2}{r_1}\right)^2 \cdot \left(\frac{Y_2}{Y_1}\right)$$
$$\frac{1}{\Delta x_2} = \left(\frac{1}{2}\right)^2 \cdot \left(\frac{2}{1}\right) = \frac{1}{4} \times \frac{2}{1}$$
$$\frac{1}{\Delta x_2} = \frac{1}{2}$$
$$\Delta x_2 = 1 \times 2 = 2\%$$

51 (a)

$$F = YA\alpha T$$
;

$$\frac{F_{Cu}}{F_{Fe}} = \frac{\alpha_{Cu}}{\alpha_{Fe}} = \frac{3}{2}$$

53 **(b**)

At point b, yielding of material starts

54 (c)

Restoring force is zero at mean position

$$F = -Kx + F_0 \Rightarrow 0 = -Kx + F_0 \Rightarrow x = \frac{F_0}{K}$$

i. e. the particle will oscillate about $x = \frac{F_0}{K}$

$$\Rightarrow F_0 = Kx \Rightarrow ma = Kx \Rightarrow a = \frac{K}{m}n : W = \sqrt{\frac{K}{m}}$$

55 **(b)**

Strain \propto Stress $\propto \frac{F}{A}$

Ratio of strain = $\frac{A_2}{A_1} = \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{4}{1}\right)^2 = \frac{16}{1}$

$$\frac{1}{K} = \frac{\Delta V/V}{\Delta p}$$
 or $\frac{\Delta V}{V} = \Delta p \ \left[\frac{1}{K}\right]$

Or
$$\frac{\Delta V}{V} \times 100 = 10^5 \times 8 \times 10^{-12} \times 100 = 8 \times 10^{-12}$$

10

$$Y = \frac{F/A}{\text{Strain}} \Rightarrow \text{strain} = \frac{F}{AY}$$

$$F = -\left(\frac{dU}{dx}\right)$$

In the region BC slope of the graph is positive $\therefore F$ = negative i.e. force is attractive in nature In the region AB slope of the graph is negative

: F = positive i.e. force is repulsive in nature

59 (a)

Total work done in the stretching a string

$$=\frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$

Hence, the work done per unit volume is

 $\frac{1}{2}$ (stress × strain).

This work is stored as the potential energy in the string.

60 **(b)**

$$Y = \frac{FL}{AI} = \frac{4FL}{\pi I^2 I}; F = mg$$

Where L = length of the wire

l =elongation of the wire

d = diameter of the wire

substituting the values, we get $Y = 2 \times 10^{11} N/m^2$

$$\Rightarrow \frac{\Delta Y}{Y} = 2\frac{\Delta d}{d} + \frac{\Delta l}{l} = 2\left(\frac{0.01}{0.4}\right) + \frac{0.05}{0.8} = \frac{9}{80}$$

$$\Rightarrow \Delta Y = \frac{9}{80} \times Y = \frac{9}{80} \times 2 \times 10^{11}$$
$$= 0.2 \times 10^{11} N/m^2$$

61 **(b)**

Let the change in position of the body due to additional force is x.

So,
$$F = \frac{1}{2}k x$$

$$\therefore x = \frac{2F}{k}$$

63 (a

 $l = \frac{FL}{AY} : l \propto \frac{1}{r^2} [Y, L \text{ and } F \text{ are constant}]$

 $\it i.e.$ for the same load, thickest wire will show minimum elongation. So graph $\it D$ represent the thickest wire

64 (a

$$l = \frac{L^2 dg}{2Y} = \frac{(10)^2 \times 1500 \times 10}{2 \times 5 \times 10^8} = 15 \times 10^{-4} m$$

65 (d

$$\tau_x = \frac{\pi \eta r^4}{2l} \, \theta_x$$
 and $\tau_y = \frac{\pi \eta (2r)^4}{2l} \theta_y$

Since,
$$\tau_x = \tau_y$$

$$\therefore \ \theta_x = 16\theta_y \quad \text{or } \frac{\theta_x}{\theta_y} = 16$$

66 (a)

$$F = -5x - 16x^{3} = -(5 + 16x^{2})x = -kx$$

$$\therefore k = 5 + 16x^{2}$$

Work done,
$$W = \frac{1}{2}k_2x_2^2 - \frac{1}{2}k_1x_1^2$$

$$= \frac{1}{2} [5 + 16(0.2)^{2}](0.2)^{2} - \frac{1}{2} [5 + 16(0.1)^{2}](0.1)^{2}$$
$$= 2.82 \times 4 \times 10^{-2} - 2.58 \times 10^{-2} = 8.7 \times 10^{-2} I$$

When a wire is stretched work is done against the interatomic forces. This work is stored in the wire in the form of elastic potential energy.

$$W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume of wire}$$

Also, when strain in small, ratio of longitudinal stress to corresponding longitudinal strain is called Young's modulus of material of body.

$$Y = \frac{longitudinal\ stress}{longitudinal\ strain}$$

$$\therefore W = \frac{1}{2} \times \text{stress} \times \frac{\text{stress}}{Y} \times \text{volume}$$

$$= \frac{(\text{stress})^2 \times \text{volume}}{2Y}$$

68 **(b)**

According the Hooke's law modulus of elasticity E.

Stress

$$=\frac{Stress}{Strain} = Constant$$

Hence, if stress is increased, then the ratio of stress to strain remains constant.

69 (c)

Work done is stretching a wire,

$$U = \frac{1}{2} \times \frac{YAl^2}{L}$$

$$= \frac{1}{2} \times \frac{2 \times 10^{11} \times 3 \times 10^{-6} \times (1 \times 10^{-3})^2}{4}$$

$$= 0.075 \text{ J}$$

70 (a)

$$\eta = \frac{Y}{2(1+\sigma)}, \qquad \sigma = 0$$

$$\therefore \quad \eta = \frac{Y}{2} = \frac{6 \times 10^{12}}{2} = 3 \times 10^{12} \text{ Nm}^{-2}$$

71 (a)

$$F = 2000N, L = 6m, l = 0.5cm, A = 10^{-6}m^{2}$$

$$Y = \frac{FL}{Al} = \frac{2000 \times 6}{10^{-6} \times 0.5 \times 10^{-2}} = 2.35 \times 10^{12} N/m^{2}$$

72 (a

Energy density $=\frac{1}{2}$ stress \times strain

$$=\frac{1}{2}$$
 stress $\times \frac{\text{stress}}{Y} = \frac{(\text{stress})^2}{2Y} \propto \frac{1}{D^4}$

Now,
$$\frac{u_A}{u_B} = \frac{D_B^4}{D_A^4} = (2)^4 = 16$$

73 (a)

If (A) is the area of cross-section and l is the length of rope, the mass of rope, $m = \frac{Al}{\rho}$. As the weight of the rope acts at the mid-point of the rope.

So,
$$Y = \frac{mg}{A} \times \frac{(1/2)}{\Delta l}$$

At $mgl \quad Al\rho gl \quad g\rho$

$$\Delta l = \frac{mgl}{2AY} = \frac{Al\rho gl}{2AY} = \frac{g\rho l^2}{2AY}$$

$$Or \Delta l = \frac{9.8 \times 1.5 \times 10^3 \times 8^2}{2 \times 5 \times 10^6} = 9.6 \times 10^2 \text{m}$$

74 (a)

Assume original length of spring = l

$$mg = kx$$

$$k_1(60) = k_2(l - 60) = kl$$

$$mg = k_1 = (7.5)$$
 according to question

And
$$mg = k_2 = (5.0)$$

$$\therefore \quad k_1 = \frac{kl}{60}, k_2 = \frac{kl}{l - 60}$$

$$\frac{k_1}{k_2} = \frac{5.0}{7.5} = \frac{l - 60}{60}$$

$$\Rightarrow \frac{2}{3} = \frac{l - 60}{60}$$

:
$$l = 100 \text{ cm}$$

And
$$kx = k_1 \times 7.5$$

$$kx = \left(\frac{5k}{3}\right) \times 7.5$$

$$x = 12.5 \text{ cm}$$

75 (c)

$$K = \frac{F}{l}$$
 and $W = \frac{1}{2}Fl = \frac{1}{2}Kl \times l = \frac{1}{2}Kl^2$

76 (c)

For twisting, Angle of shear $\phi \propto \frac{1}{L}$

i.e. if *L* is more then ϕ will be small

77 **(b)**

$$2\pi\sqrt{\frac{m}{k}} = 0.6$$
 ...(i) and $2\pi\sqrt{\frac{m+m'}{k}} = 0.7$...(ii)

Dividing (ii) by (i), we get
$$\left(\frac{7}{6}\right)^2 = \frac{m+m'}{m} = \frac{49}{36}$$

$$\frac{m+m'}{m} - 1 = \frac{49}{36} - 1 \Rightarrow \frac{m'}{m} = \frac{13}{36}$$

$$\Rightarrow m' = \frac{13m}{36}$$

$$Also \frac{k}{m} = \frac{4\pi^2}{(0.6)^2}$$

Desired extension =
$$\frac{m'g}{k} = \frac{13}{36} \times \frac{mg}{k}$$

$$\frac{13}{36} \times 10 \times \frac{0.36}{4\pi^2} = 3.5 \ cm$$

78 (a

$$L = \frac{P}{dg} = \frac{10^6}{3 \times 10^3 \times 10} = \frac{100}{3} = 34m$$

79 (d)

Equal stress

$$\frac{F_1}{A_1} = \frac{F_2}{A_2} \Rightarrow \frac{F_1}{F_2} = \frac{0.1}{0.2} = \frac{1}{2}$$

81 (b)

$$U = \frac{1}{2} \times \frac{(\text{stress})^2}{Y} \times \text{volume} = \frac{1}{2} \times \frac{F^2 \times A \times L}{A^2 \times Y}$$
$$= \frac{1}{2} \times \frac{F^2 L}{AY} = \frac{1}{2} \times \frac{(50)^2 \times 0.2}{1 \times 10^{-4} \times 1 \times 10^{11}}$$
$$= 2.5 \times 10^{-5} L$$

83 (d)

Young's modulus,
$$Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{\text{Force}}{\text{Area}}}{\frac{l}{L}}$$

Where, *l* is change in length and *L* the original length.

Force =mg, Area $=A=\pi r^2$

$$\therefore Y = \frac{FL}{\pi r^2 l}$$

$$\therefore \frac{Y_1}{T} = \frac{F_1 L_1}{T_1}$$

$$\therefore \ \frac{Y_1}{Y_2} = \frac{F_1 L_1}{\pi r_1^2 l_1} \times \frac{\pi r_2^2 l_2}{F_2 L_2}$$

$$\Rightarrow \quad \frac{l_1}{l_2} = \frac{r_2^2}{r_1^2}$$

(as all other quantities remain same for both the

Given, $r_2 = 2r_1$

$$\therefore \frac{l_1}{l_2} = \frac{(2r_1)^2}{r_1^2} = \frac{4}{1}$$

84 (b)

Out of the given substances, steel has greater value of Young's modulus. Therefore, steel has highest elasticity.

85 (c)

Breaking stress for both ropes would be same.

$$\frac{T_{\text{max}_1}}{\pi \times \left(\frac{1}{2}\right)^2} = \frac{T_{\text{max}_2}}{\pi \left(\frac{3}{2}\right)^2}$$

$$\Rightarrow T_{\text{max}_2} = 9 \times T_{\text{max}_2} = 4500 \text{ N}$$

86 **(b)**

$$\sigma = \frac{\text{Lateral strain}}{\text{Longitudinal strain}}$$

Or Lateral strain = $\sigma \times longitudial strain$ $=0.4 \times \frac{0.5}{100} = \frac{0.02}{100}$

So, percentage reduction in diameter is 0.02.

87 (c)

Let L be the length of each side of cube. Initial volume = L^3 . When each side decreases by 1%.

New length $L' = L - \frac{1}{100} = \frac{99L}{100}$

New volume = $L'^3 = \left(\frac{99L}{100}\right)^3$, change in volume,

$$\Delta V = L^{3} - \left(\frac{99L}{100}\right)^{3}$$

$$= L^{3} \left[1 - \left(1 - \frac{3}{100} + \cdots\right)\right] = L^{3} \left[\frac{3}{100}\right] = \frac{3L^{3}}{100}$$

$$\therefore Bulk \ strain = \frac{\Delta V}{V} = \frac{3L^{3}/100}{L^{3}} = 0.03$$

88 (c)

Young's modulus
$$Y = \frac{mgl}{a_1 l_1}$$

$$l_1 = \frac{mgl}{\gamma \pi r^2} \qquad \dots (i)$$

$$l_1 = \frac{mgl}{\gamma \pi r^2} \qquad(i)$$
 and $Y = \frac{mg(2l)}{a_2l_2} = \frac{mg(2l)}{\pi (2r)^2l_2}$

Or
$$l_2 = \frac{mg \, l}{2Y \, \pi r^2}$$
(ii)

$$\therefore l_1 + l_2 = \frac{mgl}{Y \pi r^2} + \frac{mgl}{2Y\pi r^2} = \frac{3}{2} \frac{mgl}{Y \pi r^2}$$

89 (c)

$$\eta = \frac{F/A}{x/L} \Rightarrow x = \frac{L}{\eta} \times \frac{F}{A}$$

If η and F are constant then $x \propto \frac{L}{4}$

For maximum displacement area at which force applied should be minimum and vertical side should be maximum, this is given in the Q position of rectangular block

$$Y = \frac{Fl}{A\Delta l} = \left(\frac{F}{\Delta l}\right) \frac{1}{A}$$
; $kl = \text{constant}$;

$$k \times 3 = k' \times 2$$
 or $k' = \frac{3k}{2}$

91 (c)

$$Y = \frac{Fl}{\alpha \Delta L} \text{ or } \Delta L \propto \frac{1}{\alpha}; \ \Delta L \propto \frac{1}{D^2}$$

$$\frac{\Delta L_2}{\Delta L_2} = \frac{D_1^2}{D_2^2} = 4 \text{ or } \Delta L_2 = 4\Delta L_1 = 4 \text{ cm}$$

$$Y = \frac{F}{A} \times \frac{l}{\Delta l} \text{ or } F = YA \frac{\Delta l}{l}$$
$$= \frac{(5.0 \times 10^8) \times 10^6) \times (2 \times 10^{-2})}{(10 \times 10^{-2})} = 100 \text{ N}$$

94 (b)

$$U(R) = \frac{A}{R^n} - \frac{B}{R^m}$$

The negative potential energy (2nd part) is the

95 (d)

$$Y = \frac{F}{A} \times \frac{l}{x}$$
 or $F = \frac{YAx}{l}$

Work done $W = \frac{1}{2} F \times x = \frac{1}{2} \frac{YAx'}{I}$

$$= \frac{1 \times 2 \times 10^{11} \times (10^{-6}) \times (2 \times 10^{-3})^{2}}{2 \times 1} = 0.4 \text{ J}$$

96 (c)

$$L = \frac{p}{eg} = \frac{10^6}{3 \times 10^3 \times 10} = \frac{100}{3} = 33.3 \text{ m}$$

97 (d)

Metals have larger values of Young's modulus than elastomers because the alloys having high densities, ie, alloys have larger values of Young's modulus than metals.

98 (b)

Ratio of adiabatic and isothermal elasticities

$$\frac{E\phi}{E\theta} = \frac{\gamma P}{P} = \gamma = \frac{C_p}{C_p}$$

99

Poisson's ratio =
$$\frac{\text{Lateral strain}}{\text{Longitudinal strain}}$$

ie,
$$0.4 = \frac{0.01 \times 10^{-3}}{\frac{l}{l}}$$

or
$$\frac{L}{l} = \frac{0.4}{0.01 \times 10^{-3}} = 4 \times 10^4$$

Young's modulus

$$Y = \frac{FL}{Al}$$

$$= \frac{100}{0.025} \times 4 \times 10^4 = 1.6 \times 10^8 \text{Nm}^{-2}$$

100 (b)

Poisson's ratio,
$$\sigma = 0.4 = \frac{\Delta d}{d} / \frac{\Delta l}{l}$$

Area
$$A = \pi r^2 = \frac{\pi dA^2}{4}$$
 or $d^2 = \frac{4A}{\pi}$

Differentiating

$$2d \, \Delta d = \frac{4}{\pi} \Delta A$$

As
$$A = \frac{\pi d^2}{4}$$
, so $\Delta A = \frac{2\pi d\Delta d}{4}$

$$\frac{\Delta A}{A} = \frac{\pi \frac{d}{2} \Delta d}{\pi d^2 / 4} = 2 \frac{\Delta d}{d}$$

Given
$$\frac{\Delta A}{A} \times 100 = 2\%$$

$$=2=2\frac{\Delta d}{d}$$
 or $\frac{\Delta d}{d}=1\%$

Given
$$\sigma = \frac{\Delta d/d}{\Delta t/l} = 0.4$$

Or
$$\frac{\Delta d}{d} = 0.4 \frac{\Delta l}{l}$$

$$\frac{\Delta l}{l} = \frac{1}{0.4} \, \frac{\Delta}{l}$$

$$= 2.5 \times 1\%$$

= 2.5%

101 (d)

$$\frac{Y_A}{Y_B} = \frac{\tan \theta_A}{\tan \theta_B} = \frac{\tan 60}{\tan 30} = \frac{\sqrt{3}}{1/\sqrt{3}} = 3 \Rightarrow Y_A = 3Y_B$$

102 (b)

$$Y = \frac{Fl}{A\Delta l}$$

Y, F and l are constants.

$$\therefore \ \frac{\Delta l_2}{\Delta_1} = \frac{a_1}{a_2} = \frac{4}{8} = \frac{1}{2}$$

Or
$$\Delta l_2 = \frac{\Delta l_1}{2} = \frac{0.1}{2}$$
 mm = 0.5 mm

103 (d)

Energy stored per unit volume is given by

$$W = \frac{Y \times (\text{strain})^2}{2}$$

$$= \frac{10^{11}}{2} \times \left(\frac{\text{change in length}}{\text{original length}}\right)^2$$

where Yis Young's modulus

$$=\frac{10^{11}}{2}\left(\frac{\propto L\Delta\theta}{L}\right)^2$$

$$=\frac{10^{11}}{2}(12\times10^{-6}\times20)^2=2880 \,\mathrm{Jm}^{-3}$$

104 **(b**)

In ductile materials, yield point exist while in Brittle material, failure would occur without yielding

105 (b)

Initial elastic potential energy

$$U_1 = \frac{1}{2} F\Delta l = \frac{1}{2}$$
$$= \frac{1}{2} \times (100 \times 1000)$$
$$\times (1.59 \times 10^{-3}) = 79.5 \text{ J}$$

Let Δl_1 , be the elongation in the rod when stretching force is increased by, 200N, Since, $\Delta l=$

$$\frac{F}{\pi r^2} \times \frac{l}{r}; so, \Delta l \propto F$$

$$\therefore \frac{\Delta l_1}{\Delta l} = \frac{F_1}{F} = \frac{100 + 200}{100} = 3$$

Or
$$\Delta l_1 = 3\Delta l = 3 \times 1.59 \times 10^{-3} \text{m} =$$

 $4.77 \times 10^{-3} \text{ m}$

Final elastic potential energy is

$$U_1 = \frac{1}{2}F_1\Delta l_1 = \frac{1}{2} \times (300 \times 10^3) \times (4.77 \times 10^{-3})$$

= 715.5 J

Increase in elastic potential energy

= 715.5 - 79.5 = 636.0 J

106 (c)

Elastic potential energy(U) is given by

$$U = \frac{1}{2}F \times l$$

= $\frac{1}{2} \times \frac{F}{A} \times \frac{l}{L} \times AL$... (i)

where, L is length of wire, A is area of cross-section of wire, F is stretching force and l is increase in length.

Eq. (i) may be written as

$$U = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume of the wire}$$

 \div Elastic potential energy per unit volume of the wire

$$u = \frac{U}{AL} = \frac{1}{2} \times \text{stress} \times \text{srain}$$

$$= \frac{1}{2} \times (\text{Young's modulus } \times \text{strain}) \times \text{strain}$$

$$= \frac{1}{2} \times (Y) \times (\text{strain})^2$$

Hence

$$u = \frac{1}{2} \times 1.1 \times 10^{11} \times \left(\frac{0.1}{100}\right)^{2}$$
$$= 5.5 \times 10^{4} \text{Jm}^{-3}$$

107 **(b)**

$$T_1 = K(l - l_1)$$

$$T_2 = K(l - l_2)$$

So,
$$\frac{T_1}{T_2} = \frac{l - l_1}{(l - l_2)}$$

$$\therefore \ T_1 l - T_1 l_2 = T_2 l - T_2 l_1$$

$$(T_1 - T_2)l = T_1l_2 - T_2l_1$$

$$l = \frac{T_1 l_2 - T_2 l_1}{(T_1 - T_2)}$$

$$l = (5a - 4b)$$

$$k = \frac{1}{b-a}$$

So, length of wire when tension is 9 N

$$9 = kl$$

$$(l' = change in length)$$

$$9 = \frac{1}{(b-a)} \times l' \Rightarrow l' = 9b - 9a$$

Hence, final length = l + l'

$$=5a-4a+9a-9a$$

$$l_0 = 5b - 4a$$

108 (c)

$$W = \frac{YAl^2}{2L} = \frac{2 \times 10^{10} \times 10^{-6} \times (10^{-3})^2}{2 \times 50 \times 10^{-2}}$$
$$= 2 \times 10^{-2} I$$

109 (c)

Energy
$$U = \frac{1}{2} \times \frac{4Al^2}{L}$$

$$= \frac{1}{2} \times \frac{2 \times 10^{11} \times 3 \times 10^{-6} \times (1 \times 10^{-3})^{2}}{4}$$
$$= 0.075 \text{ J}$$

110 (a)

$$F = YA \frac{\Delta L}{L} = 2 \times 10^{11} \times (10^{-4}) \times 0.1$$

111 (d)

Energy stored per unit volume

$$= \frac{1}{2}Y (\text{strain})^2 = \frac{1}{2} \times 1.5 \times 10^{12} \times (2 \times 10^{-4})^2$$
$$= 3 \times 10^4 \text{ Im}^{-3}$$

112 (a)

$$Y = 3K(1 - 2\sigma)$$
 and $Y = 2\eta(1 + \sigma)$

Eliminating
$$\sigma$$
 we get $Y = \frac{9\eta K}{\eta + 3K}$

113 **(b)**

Work done =
$$\frac{1}{2}F \times \Delta l = \frac{1}{2}Mgl$$

114 (a)

In the figure OA, stress \propto strain i.e. Hooke's law hold good

115 (d)

$$Y = 2\eta(1+\sigma)$$

$$\Rightarrow$$
 2.4 η = 2 η (1 + σ)

$$\Rightarrow$$
 1.2 = 1 + σ

$$\Rightarrow \sigma = 0.2$$

116 (d)

There will be both shear stress and normal stress

117 (b)

Young's modulus
$$Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{F}{A}}{\text{Strain}}$$

or
$$Y \frac{mg}{4 \times strain}$$

or
$$m = \frac{Y \times A \times \text{strain}}{Y \times A \times \text{strain}}$$

$$=\frac{2\times10^{11}\times10^{-3}\times10^{-6}}{10}=60$$
kg

118 (c)

Breaking Force \propto Area of cross section of wire (πr^2) If radius of wire is double then breaking force will become four times

119 (a)

Extensions
$$\Delta l = \left(\frac{L}{YA}\right) \cdot W$$

ie, graph is a straight line passing through origin (as shown in question also), the slope of which

$$is \frac{L}{VA}$$

Slope=
$$\left(\frac{L}{YA}\right)$$

$$Y = \left(\frac{L}{A}\right) \left(\frac{1}{\text{slope}}\right)$$

$$= \left(\frac{1.0}{10^{-6}}\right) \frac{(80-20)}{(4-1)\times 10^{-4}}$$

$$= 2.0 \times 10^{11} \text{Nm}^{-2}$$

120 (b)

$$Y = \frac{F}{\pi R^2} \times \frac{l}{\Delta l}$$

F, l and Δl are constants.

$$\therefore R^2 \propto \frac{1}{y}$$

$$\frac{R_S^2}{R_B^2} = \frac{Y_B}{Y_S} = \frac{10^{11}}{2 \times 10^{11}} = \frac{1}{2}$$

Or
$$\frac{R_S}{R_R} = \frac{1}{\sqrt{2}}$$
 or $R_S = \frac{R_B}{\sqrt{2}}$

121 (c)

$$W = \frac{1}{2} \frac{YAl^2}{L} \Rightarrow 0.4 = \frac{1}{2} \times \frac{Y \times 1^{-6} \times (0.2 \times 10^{-2})^2}{1}$$

$$\therefore Y = 2 \times 10^{11} N/m^2$$

122 (d)

Elastic potential energy per unit volume

$$= \frac{1}{2} \text{stress} \times \text{strain} = \frac{1}{2} (Y \times \text{strain}) \times \text{strain$$

123 (a)

$$Y = \frac{FV}{A^2 \Delta l}$$

$$\Delta l \propto \frac{1}{A^2}$$
 or $\Delta l \propto \frac{1}{D^4}$

$$\therefore \frac{\Delta l_A}{\Delta l_B} = \frac{D_B^4}{D_A^4} = \frac{1^4}{\left(\frac{1}{2}\right)^4} = 16$$

$$Y = \frac{F}{A} \times \frac{l}{\Delta l}$$

Now,
$$V = Al$$
 or $l \frac{V}{A} :: Y = \frac{FV}{A^2 \Delta l}$

$$\Delta l = \frac{4Fl}{\pi D^2 Y}$$

$$= \frac{4 \times 30 \times 2 \times 7}{22 \times (3 \times 10^{-3})^2 \times 1.1 \times 10^{11}}$$

$$= 7.7 \times 10^{-5} \text{m} = 0.077 \text{mm}$$

126 (d)

Increase in tension of wire = $YA\alpha\Delta\theta$ $= 8 \times 10^{-6} \times 2.2 \times 10^{11} \times 10^{-2} \times 10^{-4} \times 5$

127 (b)

$$Y_{s} = \frac{Fl_{s}}{A_{s}\Delta L_{s}}$$

And
$$Y_C = \frac{FL_C}{A_C \Delta L_C}$$

$$\therefore \frac{L_C}{L_S} = \frac{\frac{Y_C A_C \Delta L_C}{F}}{\frac{Y_S A_S \Delta L_S}{F}} = \left(\frac{Y_C}{Y_S}\right) \left(\frac{A_C}{A_S}\right) \left(\frac{\Delta L_C}{\Delta L_S}\right)$$

Here,
$$\frac{A_C}{A_S} = 2$$
, $\frac{\Delta L_C}{\Delta L_S} = 1$, $\frac{Y_C}{Y_S} = \frac{1.1}{2}$

$$\therefore \ \frac{L_C}{L_S} = \frac{1.1}{2} \times 2 \times 1 = 1.1$$

Potential energy stored in the rubber cord catapult will be converted into kinetic energy of

$$\frac{1}{2}mv^{2} = \frac{1}{2}\frac{YAl^{2}}{L} \Rightarrow v = \sqrt{\frac{YAl^{2}}{mL}}$$

$$= \sqrt{\frac{5 \times 10^{8} \times 25 \times 10^{-6} \times (5 \times 10^{-2})^{2}}{5 \times 10^{-3} \times 10 \times 10^{-2}}}$$

129 (a)

Young's modulus of a material is given by

$$Y = \frac{F \times L}{A \times I}$$

For a perfectly rigid body,

$$l = 0$$

$$\therefore Y = \infty$$
 (infinite)

130 (b)

Longitudinal strain $\alpha = \frac{l_2 - l_1}{l_1} = 10^{-3}$

$$\frac{l_2}{l_1} = 1.001$$

 $\frac{l_2}{l_1} = 1.001$ Poisson's ratio, $\sigma = \frac{\text{lateral strain}}{\text{longitudinal strai}} = \frac{\beta}{\alpha}$

Or
$$\beta = \sigma \alpha = 0.1 \times 10^{-3} = 10^{-4} = \frac{r_1 - r_2}{r_1}$$

Or
$$\frac{r_2}{r_1} = 1 - 10^{-4} = 0.9999$$

% increase in volume = $\left(\frac{V_2 - V_1}{V_1}\right) \times 100$

$$= \left(\frac{\pi r_2^2 l_2 - \pi_1^2 l_1}{\pi r_1^2 l_1}\right) \times 100 = \left(\frac{r_2^2 l_2}{r_1^2 l_1} - 1\right) \times 100$$
$$= \left[(0.9999)^2 \times 1.001 - 1 \right] \times 100 = 0.08\%$$

131 (b)

$$U = \frac{F^2}{2K} = \frac{T^2}{2K}$$

$$Y = \frac{Mgl}{\pi r^2 \times l} = \frac{4 \times (3.1\pi) \times 2.0}{\pi \times (2 \times 10^{-3})^2 \times 0.031 \times 10^{-3}}$$
$$= 2 \times 10^{11} \text{ Nm}^{-2}$$

133 (d)

10 m column of water exerts nearly 1 atmosphere pressure. So, 100 m column of water exerts nearly 10 atmospheric pressure, ie, 10 × 10⁵ Pa or 10⁶ Pa.

134 (c)

Work done = $\frac{1}{2}Fl = \frac{Mgl}{2}$

135 (c)

$$x = \frac{F}{k}$$

If spring constant is k for the first case, it is $\frac{k}{2}$ for second case.

For first case,
$$1 = \frac{4}{k}$$

For second case, $x' = \frac{6}{k/2} = \frac{12}{k}$

Dividing Eq. (ii) by Eq. (i), we get

$$x' = \frac{12/k}{4/k} = 3 \text{ cm}$$

136 (a)

$$Y = \frac{(mg + ml\omega)l}{\pi r^2 \Delta l}$$

Or
$$\Delta l = \frac{m(g+ml\omega^2)l}{\pi r^2 Y}$$

Or
$$\Delta l = \frac{1(10+2\times4\pi^2\times4)^2}{\pi(1\times10^{-3})^2\times2\times10^{11}}$$

Or $\Delta l = \frac{(20+64\times9.88)7}{2\times22\times10^5}$

Or
$$\Lambda I = \frac{(20+64\times9.88)7}{(20+64\times9.88)7}$$

$$= \frac{4566.24}{44 \times 10^5} \times 10^3 \text{ mm} = 1 \text{ mm}$$

137 (a)

In accordance with Hook's law

138 (c)

Work done = $\frac{1}{2}F \times \text{extension}$

$$= \frac{1}{2} \times \frac{YA}{L} \times 1 \qquad Y = \frac{F \times L}{A \times 1}$$
$$= \frac{YA}{2L} \qquad F = \frac{YA}{L}$$

As
$$\pi\theta = l\varphi$$
; so $\varphi = \frac{0.4 \times 30^{\circ}}{100} = 0.12^{\circ}$

$$Y = \frac{F}{A} \times \frac{L}{l}$$
 or $l = \frac{FL}{AY}$ or $l \propto 1/A$

Compressibility, $K = \frac{1}{B} = \frac{\Delta V}{V \Delta P}$

$$5 \times 10^{-10} = \frac{\Delta V}{100 \times 10^{-3} \times 15 \times 10^{6}}$$

$$\Rightarrow \Delta V = 5 \times 10^{-10} \times 100 \times 10^{-3} \times 15 \times 10^{6}$$

$$\Rightarrow \Delta V = 5 \times 10^{-10} \times 100 \times 10^{-3} \times 15 \times 10^{6}$$
$$= 0.175 \text{ mL}$$

Since, pressure increases, so volume will decrease.

143 (d)

When no weight is placed in pan, and T^2 shows some value, it means, the pan is not weightless and hence, the mass of the pan cannot be neglected.

144 (c)

$$l = \frac{FL}{AY} = \frac{FL^2}{(AL)Y} = \frac{FL^2}{VY}$$

If volume is fixed then $l \propto L^2$

145 (c)

Depression in beam

$$\delta = \frac{WL^3}{4Ybd^3}$$

$$\therefore \delta \propto \frac{1}{\gamma}$$

146 (d)

Breaking force = Breaking stress × Area of cross section of wire

 \therefore Breaking force $\propto r^2$ (Breaking stress is constant)

If radius becomes doubled then breaking force will become 4 times i. e. $40 \times 4 = 160 \text{ kg wt}$

147 (d)

Attraction will be minimum when the distance between the molecule is maximum Attraction will be maximum at that point where the positive slope is maximum because $F = -\frac{dU}{dx}$

148 (d)

Here,
$$k_Q = \frac{k_p}{2}$$

According to Hooke's law

$$\therefore F_p = -\widetilde{k}_p x_p$$

$$F_Q = -k_Q x_Q \Rightarrow \frac{F_p}{F_Q} = \frac{k_p}{k_Q} \frac{x_p}{x_Q}$$

$$F_p = F_Q$$
 [Given]

$$F_p = F_Q$$
 [Given]

$$\therefore \frac{x_p}{x_Q} = \frac{k_Q}{k_p} \quad(i)$$

Energy stored in a spring is $U = \frac{1}{2}kx^2$

Energy per unit volume = $\frac{1}{2}$ × stress × strain

$$= \frac{1}{2} \times \text{stress} \times \frac{\text{strain}}{Y}$$

$$= \frac{S^2}{2Y}$$

$$| Y = \frac{\text{stress}}{\text{strain}}$$

151 (a)

Energy stored per unit volume = $\frac{1}{2} \left(\frac{F}{A} \right) \left(\frac{l}{L} \right) = \frac{Fl}{2AL}$

Here, $p = 20,000 \text{ Ncm}^{-2} = 2 \times 10^8 \text{ Nm}^{-2}$

$$K = \frac{pV}{\Delta V}$$

$$\Delta V = \frac{pV}{k}$$

$$= \frac{2 \times 10^8 \times V}{8 \times 10^9} = \frac{V}{40}$$

New volume of the metal,

$$V' = V - \Delta V = V - \frac{V}{40} = \frac{39V}{40}$$

New mass of the metal

$$= V' \times \rho = \frac{39V}{40} \rho' = V \times 11$$

Or
$$\rho' = \frac{440}{39} \, \text{gcm}^{-3}$$

153 (b)

$$Y = \frac{mg \times 4 \times l}{\pi D^2 \times \Delta l} \text{ or } \Delta l \propto \frac{1}{D^2}$$

When D is doubled, Δl becomes on- fourth, $ie, \frac{1}{4} \times$ 2.4 cm, ie, 0.6 cm.

154 (c)

$$Y = \frac{w}{A} \times \frac{L}{l}$$
 or $l = \frac{wL}{YA}$

When wire goes over a pulley and weight wis attached each free ad end of wire, then the tension in the wire is doubled, but the original length of wire is reduced to half, so extension in

$$l' = \frac{2w \times (L/2)}{\gamma_A} = \frac{wL}{\gamma_A} = l$$

155 (c)

$$Y = \frac{\frac{F}{A}}{\frac{l}{L}} = \frac{F \times L}{A \times l}$$

(where Y is Young's modulus of elasticity Since, Y, L and A remain same.

$$\frac{F_1}{F_2} = \frac{l_1}{l_2}$$

$$\Rightarrow \frac{F}{F_2} = \frac{2 \times 10^{-3}}{4 \times 10^{-3}}$$

$$F_2 = 2F$$

$$F = \frac{YA\Delta l}{l}$$

= 9 × 10¹⁰ ×
$$\frac{22}{7}$$
 × $\frac{(0.6 \times 10^{-3})^2}{4}$ × $\frac{0.2}{100}$ N ≈ 51 N

157 (d)

$$Y = \frac{F/A}{\text{Breaking strain}}$$

Or
$$a = \frac{F}{Y \times \text{Breaking strain}} = \frac{10^4 \times 100}{7 \times 10 \times 0.2}$$

= 0.71×10⁻³ = 7.1 × 10⁻⁴

$$l = \frac{MgL}{YA} = \frac{1 \times 10 \times 1}{2 \times 10^{11} \times 10^{-6}} = 0.05 \ mm$$

Young's modulus $Y = \frac{FL}{Al}$

or
$$F = \frac{YAl}{L}$$

or $F \propto A$ or $F \propto r^2$ or $F \propto d^2$

$$\therefore \quad \frac{F_1}{F_2} = \frac{d_1^2}{d_2^2}$$

Given, $d_1 = d$, $d_2 = 2d$, $F_1 = 200$ N

$$\therefore \quad \frac{200}{F_2} = \frac{(d)^2}{(2d)^2} = \frac{1}{4}$$

or
$$F_2 = 4 \times 200 = 800$$
N

163 (b)

F =force developed

$$=YA \propto (\Delta\theta)$$

$$=10^{11} \times 10^{-4} \times 10^{-5} \times 100 = 10^{4} \text{N}$$

164 (c)

For cylinder A,

$$\tau = \frac{\pi \eta r^4}{2l} \; \theta'$$

For cylinder B, $\tau = \frac{\pi \eta (2r)^4 (\theta - \theta')}{2l}$

$$\frac{\pi \eta r^4 \theta'}{2l} = \frac{\pi \eta (2r)^4 (\theta - \theta')}{2l}$$

$$\theta' = \frac{16}{17} \theta$$

$$l = \frac{FL}{AY} :: l \propto \frac{1}{r^2} [F, L \text{ and } Y \text{ are constant}]$$

$$\frac{l_1}{l_2} = \left(\frac{r_2}{r_1}\right)^2 = (2)^2 = 4$$

Thermal stress = $Y\alpha\Delta\theta$

$$= 1.2 \times 10^{11} \times 1.1 \times 10^{-5} \times (20-10)$$

$$= 1.32 \times 10^7 N/m^2$$

Bulk modulus
$$K = \frac{\Delta p}{\Delta V} V$$

$$\Delta p = \frac{K\Delta V}{V}$$

$$\Delta p = \frac{2100 \times 10^6 \times 0.008}{200} = 84 \text{ kPa}$$

170 (d)

$$Y = \frac{F/A}{\Lambda I/I}$$

Given, $F/A = stress = 3.18 \times 10^8 Nm^{-2}$

$$l = 1m, Y = 2 \times 10^{11} Nm^{-2}$$

$$\Delta l = \frac{lF/A}{Y} = \frac{1 \times 3.18 \times 10^8}{2 \times 10^{11}} = 1.59 \times 10^{-3} m$$

Isothermal elasticity $K_i = P = 1atm = 1.013 \times$ $10^5 N/m^2$

172 (a)

Young's modulus, $Y = \frac{mgL}{Al}$

$$\Rightarrow \frac{l}{l} = \frac{mg}{4V}$$

$$\Rightarrow \frac{l}{L} = \frac{mg}{AY}$$

$$\therefore \frac{l}{L} = \frac{1 \times 10}{3 \times 10^{-6} \times 10^{11}}$$

$$L = 3 \times 10^{-6} \times 10^{13}$$
$$= 0.3 \times 10^{-4}$$

173 (b)

$$\eta = \frac{Y}{2(1+\sigma)}$$
 or $\eta = \frac{2.4 \,\eta}{2(1+\sigma)}$

Or
$$1 + \sigma = 1.2$$
 or $\sigma = 0.2$

174 (c)

From figure the increase in length $\Delta l = (PR +$

$$RQ) - PQ$$

$$= 2PR - PQ$$

$$= 2(l^2 + x^2)^{1/2} - 2l = 2l\left(1 + \frac{x^2}{l^2}\right)^{1/2} - 2l$$

$$=2l\left[1+\frac{1}{2}\frac{x^2}{l^2}\right]-2l$$

 $= x^2/l$ (By Binomial theorem)

$$\therefore \quad \text{Strain} = \Delta l/2l = x^2/2l^2$$

175 (c)

Work done on the wire to strain it will be stored as energy which is converted to heat. Therefore, the temperature increases.

176 (a)

Because dimension of invar does not vary with temperature

Bulk modulus, $B = -\frac{P}{\left(\frac{\Delta V}{V}\right)}$

-ve sign shows that with an increase in pressure, a decrease in volume occurs

Compressibility,
$$k = \frac{1}{B} = -\frac{\Delta V}{PV}$$

Decrease in volume, $\Delta V = PVk$

$$= 4 \times 10^7 \times 1 \times 6 \times 10^{-10} = 24 \times 10^{-3}$$
 litre
= $24 \times 10^{-3} \times 10^3 cm^3 = 24 cc$

178 (a)

Shearing modulus of cube

$$\eta = \frac{FL}{Al}$$

$$= \frac{8 \times 10^3 \times 40 \times 10^{-3}}{(40 \times 10^{-3})^2 \times (0.1 \times 10^{-3})} = 2 \times 10^9 \text{Nm}^{-2}$$

$$Y = \frac{F}{A} \times \frac{L}{l}$$
 or force constant $= \frac{F}{l} = \frac{YA}{L}$

$$K = Yr_0 = 20 \times 10^{10} \times 3 \times 10^{-10} = 60 \text{ N/m}$$

= $6 \times 10^{-9} \text{N/Å}$

182 (a)

We know that the Poisson's ratio have the theoretical value

$$-1 < \sigma < \frac{1}{2}$$

But practically the value of σ (Poisson's ratio) is

$$0 < \sigma < \frac{1}{2}$$

So the Poisson's ratio cannot have the value 0.7.

183 (b)

$$F = Y \times A \times \frac{l}{L}$$

 $\Rightarrow F \propto r^2[Y, l \text{ and } L \text{ are constant}]$

If diameter is made four times then force required will be 16 times, *i. e.* $16 \times 10^3 N$

184 (d)

$$Y = \frac{Fl}{A\Delta l}$$

In the given problem, Y,l and Δl are constants .

$$\therefore F \propto A$$

Or
$$F = \pi^2$$
 or $F \propto r^2$ or $\frac{F_1}{F_2} = \frac{r_1^2}{r_2^2} = \frac{1}{4}$

185 (d)

According to Boyle's law, $p_2V_2 = p_1V_1$

Or
$$p_2 = p_1 \left(\frac{V_1}{V_2} \right)$$

Or $p_1 = 72 \times 1000/900 = 80$ cm of Hg.

Stress = increase in pressure

$$= p_2 - p_1 = 80 - 72 = 8$$

$$= 1066.4 \text{ Nm}^{-2}$$

Volumetric strain =
$$\frac{V_1 - V_2}{V_1} = \frac{1000 - 900}{1000} = 0.1$$

186 (d)

If side of the cube is L then $V = L^3 \Rightarrow \frac{dV}{V} = 3\frac{dL}{L}$

∴ % change in volume = $3 \times$ (% change in length) = $3 \times 1\% = 3\%$

$$\therefore$$
 Bulk strain, $\frac{\Delta V}{V} = 0.03$

187 (c)

Here,
$$\Delta l = x$$
; $Y = \frac{F/A}{\Delta l/L}$ or $F = \frac{YA\Delta l}{L}$

The work is done from 0 to x (change in length),

So the average distance
$$=\frac{0+\Delta l}{2}=\frac{\Delta l}{2}$$

Work done = Force \times distance

$$= \frac{YA\Delta l}{L} \times \frac{\Delta l}{2} = \frac{YA(\Delta l)^2}{2L} = \frac{YAx^2}{2L}$$

188 **(b**

$$U = \frac{1}{2}Fl = \frac{F^2L}{2AY}$$
. $U \propto \frac{L}{r^2}$ [F and Y are constant]

$$\therefore \frac{U_A}{U_B} = \left(\frac{L_A}{L_B}\right) \times \left(\frac{r_B}{r_A}\right)^2 = (3) \times \left(\frac{1}{2}\right)^2 = \frac{3}{4}$$

189 (b)

Young's modulus of wire does not vary with dimension of wire. It is the property of given material

190 (a)

$$Y = \frac{\frac{F}{A}}{\frac{\Delta l}{I}} = \frac{Fl}{A\Delta l}$$

Or
$$Y = \frac{Fl \times 4}{\pi D^2 \times \Delta l}$$
 or $\Delta l \propto \frac{1}{D^2}$ or $\frac{\Delta L_2}{\Delta L_1} = \frac{D_1^2}{D_2^2} = \frac{n^2}{1}$

191 (d)

$$L_2 = l_2(1 + \alpha_2 \Delta \theta) \text{ and } L_1 = l_1(1 + \alpha_1 \Delta \theta)$$

 $\Rightarrow (L_2 - L_1) = (l_2 - l_1) + \Delta \theta (l_2 \alpha_2 - l_1 \alpha_1)$

Now
$$(L_2 - L_1) = (l_2 - l_1)$$
 so, $l_2 \alpha_2 - l_1 \alpha_1 = 0$

193 **(d)**

$$Y = \frac{Fl}{A\Lambda I}$$

Y, l and F are constants.

$$\therefore \Delta l \propto \frac{1}{D^2}$$

$$\frac{\Delta l_2}{\Delta l_1} = \frac{D_1^2}{D_2^2} = \frac{1}{16}$$

$$\therefore \Delta l_2 = \frac{1}{16} \text{ mm}$$

194 (a)

$$l \propto \frac{1}{Y} \Rightarrow \frac{Y_S}{Y_C} = \frac{l_C}{l_S} \Rightarrow \frac{l_C}{l_S} = \frac{2 \times 10^{11}}{1.2 \times 10^{11}} = \frac{5}{3}$$
 ...(i)

Also
$$l_c - l_s = 0.5$$
 ...(ii)

On solving (i) and (ii) $l_c = 1.25cm$ and $l_s = 0.75 cm$

195 (c)

$$k_1 = \frac{Y\pi(2R)^2}{L}, k_2 = \frac{Y\pi(R)^2}{L}$$

Equivalent $\frac{1}{k_1} + \frac{1}{k_2} = \frac{L}{4Y\pi R^2} + \frac{L}{Y\pi R^2}$

Since, $k_1 x_1 = k_2 x_2 = w$

Elastic potential energy of the system

$$\begin{split} U &= \frac{1}{2} k_1 x_1^2 + \frac{1}{2} k_2 x_2^2 \\ U &= \frac{1}{2} k_1 \left(\frac{w}{k_1}\right)^2 + \frac{1}{2} k_2 \left(\frac{w}{k_2}\right)^2 \\ &= \frac{1}{2} w^2 \left\{\frac{1}{k_1} + \frac{1}{k_2}\right\} = \frac{1}{2} w^2 \left(\frac{5L}{4Y\pi R^2}\right) \\ U &= \frac{5w^2 L}{8\pi Y R^2} \end{split}$$

196 (d)

$$A_1 l_1 = A_2 l_2$$

$$\Rightarrow l_2 = \frac{A_2 l_1}{A_1} = \frac{A \times l_1}{3A} = \frac{l}{3}$$

$$\Rightarrow \frac{l_1}{l_2} = 3$$

$$\Delta x_1 = \frac{F_1}{A\gamma} l_1 \qquad \dots (i)$$

$$\Delta x_2 = \frac{F_2}{3A\gamma} l_2 \qquad \dots \dots (ii)$$

Here $\Delta x_1 = \Delta x_2$

$$\frac{F_2}{3A\gamma}l_2 = \frac{F_1}{A\gamma}l_1$$

$$F_2 = 3F_1 \times \frac{l_1}{l_2}$$

$$= 3F_1 \times 3 = 9F$$

197 (c)

$$K = \frac{1.5 \text{ N}^2}{30 \times 10^{-3}} = 50 \text{ Nm}^{-1}$$

$$l = \frac{0.2 \times 10}{50} \text{ m} = 0.04 \text{ m}$$

Energy stored = $\frac{1}{2} \times 0.20 \times 10 \times 0.04 \text{ J} = 0.04 \text{ J}$

198 (b)

Young's modulus = $\frac{\text{stress}}{\text{strain}}$

As the length of wire get doubled therefore strain

 $\therefore Y = \text{strain} = 20 \times 10^8 N/m^2$

199 (d)

$$Y = \frac{Fl}{A\Delta l} \text{ or } F = \frac{YA \Delta l}{l}$$

$$\text{Or } F = \frac{2.2 \times 10^{11} \times 2 \times 10^{-6} \times 0.5 \times 10^{-3}}{2}$$

$$= 1.1 \times 10^{2} \text{ N}$$

200 (b)

In case of shearing stress there is a change in shape without any change in volume. In case of hydraulic stress there is a change in volume without any change in shape. In case of tensile stress there is no change in volume

202 (b)

If length of the wire is doubled then strain = 1 Force 2×10^5 , dyne

$$\therefore Y = Stress = \frac{Force}{Area} = \frac{2 \times 10^5}{2} = 10^5 \frac{dyne}{cm^2}$$

203 **(**b

$$\frac{3}{\eta} + \frac{1}{K} = \frac{9}{Y}$$

$$\frac{1}{K} = \frac{9}{Y} = \frac{3}{\eta} \quad \text{or } \frac{1}{K} = \frac{9}{3\eta} - \frac{3}{\eta} = 0 \implies K = \infty$$

205 (b)

$$U = \frac{1}{2} \times Y \times (\text{strain})^2 \times \text{volume}$$

= $\frac{1}{2} \times 2 \times 10^{11} \times (2 \times 10^{-3})^2 \times 2 \times 10^{-6} \times 1 = 0.8 \text{ J}$

206 (a)

$$\omega = \sqrt{\frac{K}{m}} = \sqrt{\frac{YA}{lm}}$$

$$= \sqrt{\frac{(n \times 10^9) (4.9 \times 10^{-7})}{1 \times 0.1}}$$

Given, $\omega = 140 \text{ rad s}^{-1}$ in above equation, we get, n = 4

207 (c)

Stress = (weight due to mass m_2 + half of the weight of rod)/area = $(m_2g + m_1g/2)/A = [(m_1/2) + m_2]g/A$

208 (d)

Elastic energy stored in the wire is

$$U = \frac{1}{2} \text{stess} \times \text{strain} \times \text{volume}$$
$$= \frac{1}{2} \frac{F}{A} \times \frac{l}{L} \times AL = \frac{1}{2} Fl$$
$$= \frac{1}{2} \times 200 \times 1 \times 10^{-3} = 0.1 \text{ J}$$

209 (b)

$$\Delta p = h\rho g = 200 \times 10^{3} \times 10 \text{Nm}^{-2}$$

$$= 2 \times 10^{6} \text{ Nm}^{-2}$$

$$K = \frac{\Delta p}{\frac{\Delta V}{V}} = \frac{2 \times 10^{6}}{\frac{0.1}{100}} = \frac{2 \times 10^{8}}{0.1} \text{ Nm}^{-2} = 2 \times 10^{9} \text{ Nm}^{-2}$$

210 (d)

Stress = Strain
=
$$2 \times 10^{11} \times 0.15 \text{ Nm}^{-2} = 3 \times 10^{10} \text{ Nm}^{-2}$$

211 (a)

$$W = \frac{1}{2} \frac{(\text{Stress})^2}{Y} \times \text{Volume}$$
As F , A and Y are same $\Rightarrow W \propto \text{Volume}$ [area i

As F, A and Y are same $\Rightarrow W \propto \text{Volume}$ [area is same]

$$W \propto l$$
 $(V = Al)$

$$\frac{W_1}{W_2} = \frac{l_1}{l_2} = \frac{l}{2l} = \frac{1}{2}$$

212 (d)

 $l \propto \frac{FL}{\pi r^2 Y} \Rightarrow l \propto \frac{L}{r^2}$ [F and Y are constant]

$$\frac{l_1}{l_2} = \frac{L_1}{L_2} \left(\frac{r_2}{r_1}\right)^2 = \frac{1}{2} \left(\sqrt{2}\right)^2 :: \frac{l_1}{l_2} = 1:1$$

213 (b)

Twisting coupler per unit twist for solid cylinder, for hollow cylinder, $C_1 = \frac{\pi \eta r^4}{2l}$

$$\therefore C_2 = C_1 \frac{r_2^4 - r_1^4}{r^4} = \frac{0.1 \times (5^4 - 4^4)}{\partial^4} = \frac{36.9}{81}$$
$$= 0.455 \text{ Nm}$$

214 (c)

Strain =
$$\frac{\Delta l}{l} = \frac{l}{l} = 1$$

$$\therefore Y = \text{stress} = \frac{2 \times 10^3 \text{N}}{2 \times 10^{-4} \text{m}^2} = 10^7 \text{Nm}^{-2}$$

215 (c)

As
$$l = \frac{F}{\pi(\frac{d^2}{4})} \times \frac{L}{Y}$$
 so, $l \propto \frac{L}{d^2}$

 $\frac{L}{d^2}$ is maximum for option (c).

216 (c)

In volume of sphere in liquid,

When mass m is placed on the piston, the increased pressure $p=\frac{mg}{a}$. since this increased pressure is equally applicable to all directions on the sphere, so there will be decrease in volume of sphere, due to decrease in its radius. From Eq.(i), change in volume is

$$\Delta V = \frac{4}{3}\pi \times 3r^2 \,\Delta r = 4\pi \,\Delta r$$

$$\therefore \frac{\Delta V}{V} = \frac{4\pi r^2 \Delta r}{(4/3)\pi r^3} \frac{3\Delta r}{r}$$

Now,
$$K = \frac{p}{dV/V} = \frac{mg}{a} \times \frac{r}{3\Delta r}$$

$$\therefore \frac{\Delta r}{r} = \frac{mg}{3Ka}$$

217 (b)

Energy stored in the wire $=\frac{1}{2}$ stress \times strain \times volume

and Young's modulus = $\frac{Stress}{Strain}$

$$\Rightarrow \text{strain} = \frac{S}{Y}$$

$$\frac{\text{Energy stored in wire}}{\text{Volume}} = \frac{1}{2} \times \text{stress} \times \text{strain}$$

$$= \frac{1}{2} S \times \frac{S}{Y} = \frac{S^2}{2Y}$$

218 (d)

Breaking force $\propto r^2$

If diameter becomes double then breaking force will become four times *i. e.* $1000 \times 4 = 4000 N$

220 (a)

Let the original unstretched length be l.

$$Y = \frac{\text{Stress}}{\text{Strain}} = \frac{T/A}{\Delta l/l} = \frac{T}{A} \times \frac{l}{\Delta l}$$

Now,
$$Y = \frac{4}{A} \frac{l}{(l_1 - l)} = \frac{6}{A} \frac{l}{(l_2 - l)} = \frac{9}{A} \frac{l}{(l_3 - l)}$$

$$4(l_3 - l) = 9(l_1 - l)$$

$$\Rightarrow 4l_3 + 5l = 9l_1 \dots (i)$$

Again,
$$6(l_3 - l) = 9(l_2 - l)$$

$$\Rightarrow 2l_3 + l = 3l_2$$
 ... (ii)

Solving Eqs. (i) and (ii), we obtain

$$l_3 = (2.5l_2 - 1.5l_1)$$

221 (c)

Tensile strain on each face = $\frac{F}{Y}$

Lateral strain due to the other two forces acting on perpendicular faces = $\frac{-2\sigma F}{Y}$

Total increase in length = $(1 - 2\sigma) \frac{F}{V}$

222 (d)

As stress is shown on x-axis and strain on y-axis

So we can say that $Y = \cot \theta = \frac{1}{\tan \theta} = \frac{1}{\text{slope}}$

So elasticity of wire *P* is minimum and of wire *R* is maximum

223 (b)

.....(i)

$$l = \frac{L^2 dg}{2Y} = \frac{(8 \times 10^{-2})^2 \times 1.5 \times 9.8}{2 \times 5 \times 10^8}$$
$$= 9.6 \times 10^{-11} m$$

224 (c)

$$Y = \frac{Fl}{A\Delta l} \text{ or } \Delta l \propto \frac{1}{A}$$

Again, $m = Alp, m \propto A$

$$\therefore \ \Delta l \ \propto \frac{1}{m}$$

$$\therefore \frac{\Delta l_1}{\Delta l_2} = \frac{m_2}{m_1} = \frac{2}{3}$$

226 (h)

$$K = \frac{p}{\frac{\Delta V}{V}} \quad or \frac{1}{K} = \frac{\Delta V/V}{p}$$

Or
$$\sigma = \frac{\Delta V}{pV}$$
 or $\Delta V = \sigma pV$

227 (c)

Isothermal elasticity $K_i = P$

228 (d)

If temperature increases by ΔT ,

Increase in length $L, \Delta L = L\alpha \Delta T$

$$\therefore \frac{\Delta L}{L} = \alpha \Delta T$$

Let tension developed in the ring is T

$$\therefore \frac{T}{S} = Y \frac{\Delta L}{L} = Y \alpha \Delta T$$

$$\therefore T = SY\alpha\Delta T$$

$$F = 2T$$
 (From figure)

Where, F is the force that one part of the wheel applies on the other part

$$\therefore F = 2SY\alpha\Delta T$$

$$l = \frac{FL}{AY} :: l \propto \frac{F}{r^2}$$

$$\frac{l_1}{l_2} = \frac{F_2}{F_1} \left(\frac{r_1}{r_2}\right)^2 = (4) \times \left(\frac{1}{2}\right)^2 = 1 :: l_2 = l_1 = 1mm$$

Breaking strength = tension in the wire = $mr\omega^2$ $4.8 \times 10^7 \times 10^{-6} = 10 \times 0.3 \times \omega^2$

$$\omega^2 = \frac{48}{0.3 \times 10} = 16$$

$$\omega = 4 \text{ rads}^{-1}$$

$$\omega = 4 \text{ rads}^{-1}$$

232 (b)

Given
$$\frac{\Delta V}{V} \times 100 = 1\% = \frac{1}{100}$$

$$B = \frac{P}{\frac{\Delta V}{V}} = \frac{pV}{\Delta V}$$

or
$$p = \frac{B\Delta V}{V} = 7.5 \times 10^{10} \times \frac{1}{100}$$

= $7.5 \times 10^8 \text{Nm}^{-2}$

233 (a)

Elasticity of wire decreases at high temperature i. e. at higher temperature slope of graph will be

So we can say that $T_1 > T_2$

$$K = \frac{\Delta p}{\Delta V/V}$$
 or $\frac{1}{K} = \frac{\Delta p}{V\Delta p}$

Or
$$\Delta V = \frac{1}{\kappa} V \Delta p$$

$$= 4 \times 10^{-5} \times 100 \times 100 \text{ cm}^3$$

$$= 4 \times 10^{-1} \text{cm}^3 = 0.4 \text{ cm}^3$$

235 (a)

Steel has the highest elasticity.

$$Y = \frac{FL}{Al} = \frac{FdL^2}{Ml}$$

As
$$M = \text{Volume} \times \text{density} = A \times L \times d :: A = \frac{M}{Ld}$$

237 **(b)**

$$\eta = \frac{Fl}{A\Delta l} = \frac{Fl}{l^2 \Delta l} = \frac{F}{l \Delta l} \text{ or } \Delta l \propto \frac{1}{l}$$

If l is halved, then Δl is doubled

238 (d)

Young's modulus is defined only in elastic region

$$Y = \frac{\text{Stress}}{\text{Strain}} = \frac{8 \times 10^7}{4 \times 10^{-4}} = 2 \times 10^{11} N/m^2$$

It is the specific property of a particular metal at a given temperature which can be changed only by temperature variations

240 (a)

Energy density = $\frac{1}{2}$ × stress × strain

$$Y = \frac{\text{stress}}{\sigma}$$
 or stress = $Y\sigma$

$$\therefore \text{ energy density} = \frac{1}{2} Y\sigma \times \sigma = \frac{Y\sigma^2}{2}$$

241 (d)

Given,
$$\frac{l_1}{l_2} = a, \frac{r_1}{r_2} = b, \frac{Y_1}{Y_2} = c$$

Let Young's modulus of steel be Y_1 , and that of

$$\therefore Y_1 = \frac{F_1 l_1}{A_1 \Delta l_1} \qquad \dots (i)$$

and
$$Y_2 = \frac{F_2 l_2}{A_2 \Delta l_2}$$
 ...(ii)

Dividing Equation (i) by Equation (ii), we get

$$\frac{Y_1}{Y_2} = \frac{F_1.A_2.l_1.\Delta l_2}{F_2.A_1.l_2.\Delta l_1} ...(iii)$$

Force on steel wire from free body diagram

$$T = F_1 = (2g)$$
 Newton

Force on brass wire from free body diagram

$$F_2 = T_1'' = T + 2g = 4g$$
 Newton

Now, putting the value of F_1 , F_2 , in Equation (iii),

$$\frac{Y_1}{Y_2} = \left(\frac{2g}{4g}\right) \cdot \left(\frac{\pi r_2^2}{\pi r_1^2}\right) \cdot \left[\frac{l_1}{l_2}\right] \cdot \left(\frac{\Delta l_2}{\Delta l_1}\right) = \frac{1}{2} \left(\frac{1}{b_2}\right) \cdot a\left(\frac{\Delta l_2}{\Delta l_1}\right)$$

Volume $V = \text{cross sectional } A \times \text{length } l \text{ or } V = Al$

$$Strain = \frac{Elongation}{Original length} = \frac{v}{l}$$

Young's modulus $Y = \frac{\text{stress}}{\text{strain}}$

Work done, $W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$

$$W = \frac{1}{2} \times Y \times (\text{strain})^2 \times Al$$

$$= \frac{1}{2} \times Y \times \left(\frac{y}{l}\right)^2 \times Al = \frac{1}{2} \left(\frac{YA}{l}\right) y^2 \Rightarrow W \propto y^2$$

243 (a)

$$Y = \frac{Fl}{A\Delta l}$$
 or $F = \frac{YA\Delta l}{l}$

Work done $=\frac{1}{2}F\Delta l$

$$= \frac{1}{2} \frac{FA(\Delta l)^2}{l} = \frac{YA(l)^2}{2l}$$
$$= \frac{2 \times 10^{11} \times 10^{-6} \times 10^{-6}}{2 \times 1} = 0.1 \text{ J}$$

245 (c)

$$\Delta p = 100 \text{ atm} = 100 \times 10^6 \text{ dyne cm}^2$$

$$= 10^8 \text{ dyne cm}^{-2}$$

$$\frac{\Delta V}{V} = \frac{0.01}{100} = 10^{-4}$$

$$K = \frac{10^8}{10^{-4}}$$
 dyne cm⁻² = 10¹² dyne cm⁻²

When a wire is stretched through a length, then work has to be done, this work is stored in the wire in the form of elastic potential energy Potential energy of stretched wire is

$$U = \frac{1}{2} \times \text{stress} \times \text{strain}$$

$$\therefore U = \frac{1}{2} \times F \times s \Rightarrow U = \frac{1}{2} Fx$$

247 (a)

The Poisson's ratio of the material of the wire is

$$\sigma = \frac{\frac{\Delta D}{D}}{\frac{\Delta l}{l}}$$

The relation for volume of wire is

$$V = \pi r^2 l \qquad \left(\text{But, } r = \frac{D}{2} \right)$$

$$V = \pi \left(\frac{D}{2}\right)^2 \quad l = \frac{\pi D^2 l}{4} \quad ... (i)$$

Differentiating both sides of Eq. (i)

$$dV = \frac{\pi l}{4} \cdot 2D \cdot dD + \pi D^2 \times \frac{l}{4} dl$$

As volume remains constant hence, we get

$$0 = \pi \frac{l}{2} D dD + \pi \frac{D^2}{4} dl$$

or
$$-\pi \frac{l}{2}D \ dD = \frac{\pi D^2}{4} dl$$

or $-\frac{dD}{D} \frac{l}{dl} = \frac{2}{4} = 0.5$

or
$$-\frac{dD}{D}\frac{l}{dl} = \frac{2}{4} = 0.5$$

Therefore, Poisson's ratio, $\sigma = 0.5$

248 (c)

Here,
$$w = 2 \times 1000 \times 980$$
 dyne; $l = 100$ cm, $b = 2$ cm, $d = 1$ cm, $Y = 20 \times 10^{11}$ dyne cm⁻²,

Now,
$$\delta = \frac{wl^3}{4Ybd^3} = \frac{(2\times1000\times980)\times(100)^3}{4\times(20\times10^{11})\times2\times(1)^3}$$

$$= 0.1225$$
 cm.

249 (b)

$$10^6 = \frac{LAdq}{A}$$

$$\therefore L = \frac{10^6}{3 \times 10^3 \times 9.8} \text{m} = \frac{1000}{3 \times 9.8} = 34.01 \text{m}$$

250 (b)

 $l \propto \frac{1}{r^2}$, if radius of the wire is doubled then increment in length will become $\frac{1}{4}$ times i. e. $\frac{12}{4}$ =

254 (c)

Isothermal bulk modulus = Pressure of gas

For triatomic gas $\gamma = \frac{4}{3}$

Force constant, $K = \tan 30^{\circ} = 1/\sqrt{3}$

257 (d)

Work done in stretching the wire

$$=\frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$

$$= \frac{1}{2} \times \frac{F}{A} \times \frac{\Delta l}{l} \times Al$$

$$=\frac{1}{2}F\Delta l$$

258 (a)

$$W = \frac{F^2 l}{2\left(\frac{\pi D^2}{4}\right) Y}$$

Y, l and F are constants.

$$W \propto \frac{1}{D^2}$$

$$\frac{W_1}{W_2} = \frac{D_2^2}{D_2^2} = 16$$

Now,
$$W_1 = \frac{1}{2} \times 10^3 \times 1 \times 10^{-3} = 0.5 \text{ J}$$

$$W_2 = \frac{1}{2} \times 10^3 \times \frac{10^{-3}}{16} = \frac{1}{32} = 0.03125$$

Again,
$$\frac{W_1}{W_2} = \frac{0.5}{0.03125} = 16$$

Answer is confirmed by comparing Eqs. (i) and

259 (d)

The weight of the rod can be assumed to act at its mid-point.

Now, the mass of the rod is

$$M = V\rho$$

$$\Rightarrow M = AL\rho$$

Here, A = area of cross - sections,

L= length of the rod.

Now, we know that the Young's modulus

$$Mg = Vpg$$

$$Y = \frac{\frac{MgL}{2}}{A \cdot l} \text{ (Here, } L = \frac{L}{2}, l = \text{ extension)}$$

$$\implies l = \frac{\frac{MgL}{2}}{\frac{AY}{AY}}$$

or
$$l = \frac{MgL}{2AY}$$

On putting the value of M from Eq.(i), we get

$$l = \frac{AL\rho \cdot gL}{2AY}$$

or
$$l = \frac{\rho g L^2}{2Y}$$

260 (d)

Work done = $\frac{1}{2} \times Y \times (\text{strain})^2 \times \text{volume}$

$$2 = \frac{1}{2} \times Y \times \left(\frac{\Delta L}{L}\right)^2 = \frac{YA\Delta L^2}{2L}$$

New work done, $W' = \frac{Y(4A)\Delta L^2}{2(L/2)}$

$$= 8 \left[\frac{YA\Delta L^2}{2L} \right] 8 \times 2 = 16 \text{ J}$$

261 (c)

$$Y = \frac{Fl}{\pi r^2 \Delta l} \text{ or } \Delta l = \frac{F}{\pi r^2 Y}$$

$$\Delta l \propto \frac{1}{r^2}, \Delta l' \propto \frac{2l}{\left(\sqrt{2r}\right)^2} \text{ or } \Delta l' \propto \frac{1}{r^2}$$

$$\therefore \frac{\Delta l}{\Delta l'} = 1$$

$$W = \frac{1}{2} F \Delta l$$

$$W = \frac{1}{2} \times \frac{\gamma \pi r^2 \Delta l}{l} \Delta l \qquad Y = \frac{Fl}{\pi r^2 \Delta l}$$
or
$$W = \frac{\gamma \pi r^2 \Delta l}{2l} \qquad F = \frac{\gamma \pi r^2 \Delta l}{l}$$

Or
$$W \propto \frac{r^2}{l}, W \propto \frac{(2r^2)^2 2}{l}$$

$$\frac{W'}{W} = 8$$
 or $W' = 8 \times 2 \text{ J} = 16 \text{ J}$

264 (c)

$$Y = \frac{Fl}{A\Delta l}$$

Y, l and A are constants.

$$\therefore \ \frac{F}{\Delta l} = {\rm constant} \ \ {\rm or} \ \Delta l \ \propto \ F$$

Now, $l_1 - l \propto T_1$ and $l_2 - l \propto T_2$

Dividing,
$$\frac{l_1-l}{l_2-l} = \frac{T_1}{T_2}$$

Or
$$l_2T_2 - lT_2 = l_2T_1$$
 or $l(T_1 - T_2) = l_2T_1 - l_1T_2$
Or $l = \frac{l_2T_1 - l_1T_2}{T_1 - T_2}$ or $l = \frac{l_1T_2 - l_2T_1}{T_2 - T_1}$

Or
$$l = \frac{l_2 T_1 - l_1 T_2}{T_1 - T_2}$$
 or $l = \frac{l_1 T_2 - l_2 T_1}{T_2 - T_1}$

265 (a)

Energy stored in the wire

$$U = \frac{1}{2}Y \times (\text{strain})^2 \times \text{volume}$$

or
$$U = \frac{1}{2}Y \times \left(\frac{x}{l}\right)^2 \times Al$$

or
$$U = \frac{1}{2} \frac{Yx^2}{l} \times A$$

or
$$U = \frac{1}{2} \frac{YA}{I} x^2$$

266 (d)

$$Y = \frac{Mg}{A} \times \frac{L/2}{\Delta L}$$

(Length is taken as $\frac{L}{2}$ because weight acts as CG)

Now,
$$M = AL\rho$$

(For the purpose of calculation of mass, the whole of geometrical length L is to be considered.)

$$\therefore Y = \frac{ALpgL}{2A\Lambda I}$$

Or
$$\Delta L = \frac{pgL^2}{2V} = \frac{1.5 \times 10^3 \times 10 \times 8 \times 8}{2.5 \times 10^6}$$

Or
$$\Delta L = \frac{pgL^2}{2Y} = \frac{1.5 \times 10^3 \times 10 \times 8 \times 8}{2 \times 5 \times 10^6}$$

= 9.6×10^{-2} m = $9.6 \times 10^{-2} \times 10^3$ mm

267 (d)

From the definition of Bulk modulus,

$$B = -\frac{dp}{(dV/V)}$$

Substituting the values we have,

$$B = \frac{(1.165 - 1.01) \times 10^5}{\left(\frac{10}{100}\right)}$$

$$Pa = 1.55 \times 10^5 Pa$$

269 (d)

We know that $Y = (1 + \sigma)2\eta$

$$F = \frac{YAl}{L} = 0.9 \times 10^{11} \times \pi \times (0.3 \times 10^{-3})^2 \times \frac{0.2}{100}$$
$$= 51 N$$

$$\frac{\Delta l}{l} = \frac{\text{stress}}{Y} = \frac{1000 \times 980)/(10^{-1})^2}{10^{10}} = 0.0098$$

% increase in length of wire

$$= \frac{\Delta l}{l} \times 100 = 0.0098 \times 100 = 0.98\%$$

$$Y = \frac{F}{A} \quad \frac{L}{l} \Rightarrow l \propto \frac{L}{A} \propto \frac{L}{\pi d^2}$$

$$\therefore l \propto \frac{L}{d^2}$$

The ratio of $\frac{L}{d^2}$ is maximum for case (d).

274 (b)

Volume of cylindrical wire, $V = \frac{\pi r^2 L}{4}$,

where x is the diameter of wire Differentiating both sides

$$\frac{dV}{dx} = \frac{\pi}{4} \left[2xL + x^2 \cdot \frac{dL}{dx} \right]$$

Also, volume remains constant

$$\therefore \frac{dV}{dx} = 0$$

$$\therefore 2xL + x^2 \frac{dL}{dx} = 0$$

$$\Rightarrow 2xL = -x^2 \frac{dL}{dx}$$

$$\Rightarrow \frac{\frac{dx}{x}}{\frac{dL}{L}} = -\frac{1}{2}$$

Poisson's ratio = $-\frac{1}{2}$.

275 (d)

Let L be the length of each side of cube. Initial volume of cube = L^3 . When each side of cube decreases by 2%, the new length

$$L' = L - \frac{2L}{100} = \frac{98L}{100}$$

New volume = $L'^3 = (98L/100)^3$

: Change in volume

$$\Delta V = L^3 - (98L/100)^3$$

$$= L^3 \left[1 - \left(1 - \frac{2}{100} \right)^3 \right]$$

$$=L^{3}\left[1-\left(1-\frac{6}{100}+\ldots\right)\right]$$

$$=L^3\left[\frac{6}{100}\right]=\frac{6L^3}{100}$$

∴ Bulk strain =
$$\frac{\Delta V}{V} = \frac{6L^3/100}{L^3} = 0.06$$

276 (c)

$$Y = 2\eta(1+\sigma)$$

277 (a)

Isothermal elasticity = p, Adiabatic elasticity =

$$\therefore \frac{E_{\theta}}{E_{\perp}} = \frac{1}{\Upsilon}, \Upsilon > 1$$

$$\therefore \frac{E_{\theta}}{E_{\phi}} < 1$$

Young's modulus $Y = \frac{F}{A} \times \frac{L}{L}$

$$Y = \frac{F}{\pi r^2} \times \frac{L}{l}$$

$$Y \propto \frac{L}{r^2}$$

Option (d) has the largest extension when the same tension is applied.

280 (b)

$$K = \frac{4 \times 9.8}{2 \times 10^{-2}}$$
 or $K = 19.6 \times 10^{2} \text{ Nm}^{-1}$

Work done =
$$\frac{1}{2}$$
 × 19.6 × 10² × (5 × 10⁻²)² J =

281 (c)

The work done by wire is stored as potential energy in the wire

$$U = \frac{1}{2} \times \text{Young's modulus} \times (\text{strain})^2$$

Given,
$$Y = 2 \times 10^{10} \text{Nm}^{-2}$$

Strain=
$$\frac{l}{L} = \frac{l}{50 \times 10^{-2}} U = 2 \times 10^{-2} J$$

$$\therefore \ \ 2 \times 10^{-2} = \frac{1}{2} \times 2 \times 10^{10} \times \left(\frac{l}{50 \times 10^{-2}}\right)^2$$

 $\Rightarrow l \approx 0.707 \,\mathrm{mm}$ (stretched)

282 (d)

$$Y = \frac{F \times 4 \times 1}{\pi D^2 \, \Delta l}$$

In the given problem, $F \propto D^2$. Since, *D* is increased by a factor of, 4, therefore, F is increased by a factor of 16.

283 (a)

$$\propto F$$

$$\therefore \quad \frac{F_{Cu}}{F_{Fe}} = \frac{Y_{Cu}}{Y_{Ee}} = \frac{1}{3}$$

Force = weight suspended + weight of $\frac{3L}{4}$ of wire

$$w_1 + \frac{3w}{4}$$

$$Stress = \frac{force}{area} = \frac{W_1 + \frac{3}{4}w}{5}$$

285 (d)

$$Y = 2\eta(1+\sigma) \Rightarrow \sigma = \frac{0.5Y - \eta}{\eta}$$

286 (a)

$$Y = \frac{MgL}{Al} = \frac{250 \times 9.8 \times 2}{50 \times 10^{-6} \times 0.5 \times 10^{-3}}$$
$$= 19.6 \times 10^{11} N/m^2$$

Stress =
$$\frac{100\text{N}}{10^{-6}\text{m}^2}$$
 = 10^8 Nm^{-2}
Strain = $\frac{2 \times 10^{-3}}{2}$ = 10^{-3}

Strain =
$$\frac{2 \times 10^{-3}}{2}$$
 = 10^{-3}

Young modulus

$$= \frac{10^8}{10^{-3}} \text{ Nm}^{-2} = 10^{11} \text{ Nm}^{-2}$$

Energy stored = $\frac{1}{2} \times 100 \times 2 \times 10^{-3}$ J = 10 - 1H = 0.1I

288 (d)

Energy stored per unit volume = $\frac{1}{2} \times \text{Stress} \times$

 $=\frac{1}{2} \times \text{Young's modulus} \times (\text{Strain})^2 = \frac{1}{2} \times Y \times x^2$

289 (d)

Breaking force does not depend upon length. Breaking force = breaking stress \times area of crosssection for a given material, breaking stress in

$$\therefore \frac{F_2}{F_1} = \frac{A_2}{A_1} = \frac{\pi (6r)^2}{\pi r^2} = 36$$
Or $F_2 = 36F_1 = 36F_5$

290 (a)

Per unit volume energy stored

$$= \frac{1}{2} \times Y \times (\text{strain})^2 = \frac{1}{2} \times Y \times \left(\frac{l}{L}\right)^2$$

or
$$l = \frac{L}{100} \times \text{stored energy}$$

$$Y = \frac{1}{2} \times 2 \times 10^{10} \times \left(\frac{L}{100L}\right)^2$$

= 10⁶ lm⁻³

291 (b)

$$Y = \frac{Fl}{A\Delta l}$$
 or $\Delta l = \frac{Fl}{AY} = \frac{Fl}{\pi r^2 Y}$

In the given problem, $\Delta l = \frac{1}{r^2}$; when both

l and r are double, Δl is halved.

293 (b)

Breaking force $\propto \pi r^2$

If thickness (radius) of wire is doubled then breaking force will become four times

$$l = \frac{FL}{AY} :: l \propto \frac{1}{A} \quad [F, L \text{ and } Y \text{ are constant}]$$

$$\frac{A_2}{A_1} = \frac{l_1}{l_2} \Rightarrow A_2 = A_1 \left(\frac{0.1}{0.05}\right) = 2A_1 = 2 \times 4$$

$$= 8mm^2$$

295 (b)

Young's modulus
$$Y = \frac{FL}{Al}$$

$$=\frac{FL}{\pi a^2 l}$$

Since for same material Young's modulus is same, 304 (d)

$$Y_1 = Y_2$$

or
$$\frac{FL}{\pi a^2 l} = \frac{(2F)(2L)}{\pi (2a)^2 l'}$$

296 (b)

$$U = \frac{1}{2} \times Y \times (\text{Strain})^2 = \frac{1}{2} \times 9 \times 10^{11} \times \left(\frac{1}{100}\right)^2$$

= 4.5 × 10⁷ *I*

297 (d)

$$l = \frac{FL}{AY} \Rightarrow l \propto \frac{1}{r^2} [F, L \text{ and } Y \text{ are same}]$$

$$\frac{l_A}{l_B} = \left(\frac{r_B}{r_A}\right)^2 = \left(\frac{r_B}{2r_B}\right)^2 = \frac{1}{4} \Rightarrow l_A = 4l_B \text{ or } l_B = \frac{l_A}{4}$$

298 (a)

Area of hysterisis loop gives the energy loss in the process of stretching and unstretching of rubber band and this loss will appear in the form of heating

299 (a)

Speed of sound in a stretched string $v = \sqrt{\frac{T}{\mu}}$...(i)

Where T is the tension in the string and μ is mass per unit length

According to Hooke's law, $F \propto x :: T \propto x$...(ii)

From (i) and (ii), $v \propto \sqrt{x}$

$$\therefore v' = \sqrt{1.5} \ v = 1.22 \ v$$

300 (a)

Work done =
$$\frac{1}{2} F\Delta l$$

$$\begin{array}{c|c} = \frac{1YA\Delta l^2}{2 \ l} & Y = \frac{Fl}{A\Delta l} \\ \frac{2\times 10^{11} \times 10^{-6} (2\times 10^{-3})^2}{2\times 1} & \text{or } F = \frac{YA\Delta l}{l} \\ = 4\times 10^{-1} I = 0.4 I \end{array}$$

301 (a)

Work done, $W = \frac{1}{2}F \times l = \frac{1}{2} \times \text{stress} \times \text{strain} \times$

Or
$$W = \frac{1}{2}Y \times (\text{stress})^2 \times \text{volume}$$

$$= \frac{1}{2}Y\left(\frac{\Delta l}{l}\right)^2 \times Al = \frac{1}{2}Y\frac{\Delta l^2 A}{l}$$
$$= \frac{2 \times 10^{11} \times 10^{-6} \times 10^{-6}}{2 \times 1} = 0.1 \text{ J}$$

302 (a)

If coefficient of volume expansion is α and rise in temperature is $\Delta\theta$ then $\Delta V = V\alpha\Delta\theta \Rightarrow \frac{\Delta V}{V} = \alpha\Delta\theta$ Volume elasticity $\beta = \frac{P}{\Delta V/V} = \frac{P}{\alpha \Delta \theta} \Rightarrow \Delta \theta = \frac{P}{\alpha \beta}$

303 (b)

Stress \propto Strain \Rightarrow Stress $\propto \frac{1}{4}$

Work done in stretching the wire = potential energy stored

$$= \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$

$$= \frac{1}{2} \times \frac{F}{A} \times \frac{l}{L} \times AL = \frac{1}{2}Fl$$

305 (b)

Young's modulus of material $Y = \frac{\text{Linear stress}}{\text{Longitudinal strain}}$ If longitudinal strain is equal unity, then

Y =Linear stress produced

307 (d)

$$\tau = C\theta$$

$$= \frac{\pi \eta r^4 \theta}{2L} = \text{constant}$$

$$\Rightarrow \frac{\pi \eta r^4 (\theta - \theta_0)}{2l} = \frac{\pi \eta \left(\frac{r}{2}\right)^4 (\theta_0 - \theta')}{2(l/2)}$$

 $\Rightarrow \frac{(\theta-\theta_0)}{2} = \frac{\theta_0}{16}$

308 (a)

To twist the wire through the angle $d\theta$, it is necessary to do the work

$$dW = \tau d\theta$$

And
$$\theta = 10' = \frac{10}{60} \times \frac{\pi}{180} = \frac{\pi}{1080}$$
 rad
$$W = \int_0^{\theta} \tau \, d\theta = \int_0^{\theta} \frac{\eta \pi r^4 \theta d\theta}{2l} = \frac{\eta \pi r^4 \theta}{4l}$$

$$W = \frac{5.9 \times 10^{11} \times 10^{-5} \times \pi (2 \times 10^{-5})^4 \pi^2}{10^{-4} \times 4 \times 5 \times 10^{-2} \times (1080)^2}$$

$$W = 1.253 \times 10^{-12} \text{ J}$$

309 (c)

Graph between applied force and extension will be straight line because in elastic range Applied force ∝ extension But the graph between extension and stored

But the graph between extension and stored elastic energy will be parabolic in nature

As
$$U = 1/2 kx^2$$
 or $U \propto x^2$

310 (d)

Net elongation of the rod is

$$l = \frac{3F}{AY} + \frac{2F}{AY} + \frac{2F}{AY}$$

$$l = \frac{3F\left(\frac{2L}{3}\right)}{AY} + \frac{2F\left(\frac{L}{3}\right)}{AY}$$

$$l = \frac{8FL}{3AV}$$

311 (d)

Shearing strain = $\frac{0.02 \times 10^{-2}}{0.1}$ = 0.002

312 (b)

Initial length (circumference) of the ring = $2\pi r$ Final length (circumference) of the ring = $2\pi R$ Change in length = $2\pi R - 2\pi r$

$$strain = \frac{change in length}{original length} = \frac{2\pi(R-r)}{2\pi r} = \frac{R-r}{r}$$

Now Young's modulus $E = \frac{F/A}{l/L} = \frac{F/A}{(R-r)/r}$

$$\therefore F = AE\left(\frac{R-r}{r}\right)$$

313 **(b)**

$$T = \frac{YAl}{L}$$

Increase in length of one segment of wire

$$l = \left(L + \frac{1}{2}\frac{d^2}{L}\right) - L = \frac{1}{2}\frac{d^2}{L}$$

So,
$$T = \frac{Y\pi r^2 d^2}{2L^2}$$

314 (b)

Let L be length of body, A the area of cross-section and l the increase in length.

$$Stress = \frac{F}{A'} strain = \frac{l}{L}$$

Force necessary to deform the body is

$$F = \frac{YA}{L}l$$

If body is deformed by a distance, then

Work done =
$$F \times dl = \frac{YA}{L}ldl$$

$$W = \int_0^1 \frac{YA}{L} l dl = \frac{YA}{L} \left[\frac{l^2}{2} \right]_0^l = \frac{1}{2} YA \frac{l^2}{L}$$

$$= \frac{1}{2} \left(Y \frac{l}{L} \right) \left(\frac{l}{L} \right) (AL)$$

$$= \frac{1}{2}(stress \times strain) \times volume$$

Hence, work done for unit volume is

$$W = \frac{1}{2}$$
 stress × srain.

315 (c)

$$l = \frac{FL}{\pi r^2 Y}$$

$$r^2 \propto \frac{1}{Y}$$
 (F, L and l are constants)

$$\frac{r_2}{r_1} = \left[\frac{Y_1}{Y_2}\right]^{1/2} = \left[\frac{7 \times 10^{10}}{12 \times 10^{10}}\right]^{1/2}$$

$$r_2 = 1.5 \times \left(\frac{7}{12}\right)^{\frac{1}{2}} = 1.145 \text{ mm}$$

: Diameter = 2.29 mm.

$$l = \frac{FL}{AY} = \frac{4.8 \times 10^3 \times 4}{1.2 \times 10^{-4} \times 1.2 \times 10^{11}} = 1.33 \ mm$$

Decrease in volume, $\Delta V = \frac{\Delta p \times V}{K}$

Final volume $V' = V - \Delta V = V - \frac{V \Delta p}{K} = V(1 - \frac{V \Delta p}{K})$

Or
$$\frac{m}{\rho'} = \frac{m}{\rho} \left(1 - \frac{\Delta p}{K} \right)$$

Or
$$\rho' = \frac{\rho}{(1 - \frac{\Delta \rho}{K})}$$

Or
$$\rho = \frac{10.5 \times 10^3}{(1-10^7/17 \times 10^{10})}$$

 $= 10500.61 \text{ kg m}^{-3}$

So
$$\rho' - \rho = 10500.61 - 10500 = 0.61 \text{ kg m}^{-3}$$

Strain =
$$\frac{\Delta l}{l} = \frac{l\alpha t}{l} = \alpha t = 12 \times 10^{-6} \times 30 = 36 \times 10^{-5}$$

$$Y = \frac{\text{stress}}{\text{strain}}$$
 or strain $= \frac{\text{stress}}{Y}$ or $\frac{\Delta L}{L} = \frac{\text{stress}}{Y}$

Since, cross-sections are equal and same tension exists in both the wires, therefore, the stresses developed are equal.

Also, ΔL is given to be the same for both the wires.

: L ∝ Y

$$\therefore \ \frac{L_s}{L_{Cu}} = \frac{2 \times 10^{11}}{1.1 \times 10^{11}} = \frac{20}{11}$$

321 (c)

$$V = \pi r^{2} l$$

$$\frac{\Delta V}{V} = \frac{\Delta(\pi r^{2} l)}{\pi r^{2} l} \text{ or } \frac{\Delta V}{V} = \frac{r^{2} \Delta l + 2r l \Delta r}{r^{2} l}$$

$$\frac{\Delta V}{V} = \frac{\Delta l}{l} + \frac{2\Delta r}{r}$$

But $\sigma = -\frac{\Delta r/r}{\frac{\Delta l}{2}} = -\frac{\Delta r/r}{-2\frac{\Delta r}{2}} = 0.5$

Energy / volume = $\frac{1}{2}$ × stress × strain $=\frac{1}{2}Y \times \operatorname{strain} \times \operatorname{strain} = \frac{1}{2}Y \times \operatorname{strain}^2$ $=\frac{1}{2}\times2\times10^{10}\times0.06\times10^{-2}\times0.06\times10^{-2}$ $= 3600 \, \text{J m}^{-3}$

323 (a)

$$Y = \frac{Fl}{A\Delta l} = \frac{(ml\omega^2)l}{A\Delta l} \text{ or } Y = \frac{ml^2\omega^2}{A\Delta l}$$

$$Or Y = \frac{1 \times 1 \times 1 \times 20 \times 20}{10^{-6} \times 10^{-3}} = 4 \times 10^{11} \text{ Nm}^{-2}$$

324 (d)

$$Y = \frac{k}{r_0} = \frac{7}{3 \times 10^{-10}} = 2.33 \times 10^{10} N/m^2$$

325 (d)

$$F = Y A \alpha \Delta \theta$$

If Y, A and $\Delta\theta$ are constant then $\frac{F_A}{F_B} = \frac{\alpha_A}{\alpha_B} = \frac{3}{2}$

326 (a)

$$\Delta L = \frac{FL}{AY}$$

Because, wires of the same material are stretched by the same load. So, Fand Ywill be constant.

$$\Delta L_1 = \frac{100}{\pi \times (1 \times 10^{-3})^2} = \frac{100}{\pi \times 10^{-6}}$$

$$=\frac{100}{\pi}\times10^{-6}$$

$$\therefore \Delta L_2 = \frac{200}{\pi \times (3 \times 10^{-3})^2} = \frac{200}{\pi \times 9 \times 10^{-6}}$$

$$=\frac{22.2}{\pi}\times 10^6$$

$$\therefore \Delta L_3 = \frac{300}{\pi \times (3 \times 10^{-3})^2} = \frac{100}{\pi \times 9 \times 10^{-6}}$$

$$=\frac{33.3}{\pi}\times 10^6$$

$$\therefore \Delta L_4 = \frac{400}{\pi \times (4 \times 10^{-3})^2} = \frac{400}{\pi \times 16 \times 10^{-6}}$$

$$= \frac{25}{\pi} \times 10^6$$

We can see that, L=100 cm and r=1mm will elongate most.

328 (b)

$$Y = \frac{FL}{\pi r^2}$$
 or $l = \frac{FL}{\pi r^2 Y}$ or $l \propto \frac{Fl}{r^2}$

$$\frac{l_1}{l_2} = \frac{F \times L}{r^2} \times \frac{(4r^2)}{4F \times 4L}$$

Or $l_1 = l_2 = l$

So, l remain unchanged.

329 (d)

For Hook's law, stress ∝ strain ie, the graph between stress and strain is a straight line, which is so for portion O to D.

330 (d)

When the length of wire is doubled then l = L and $strain = 1 :: Y = strain = \frac{F}{4}$: Force = $Y \times A = 2 \times 10^{11} \times 0.1 \times 10^{-4}$

Force =
$$Y \times A = 2 \times 10^{11} \times 0.1 \times 10^{11}$$

$$K = \frac{\Delta P}{\Delta V/V} = \frac{h\rho g}{\Delta V/V} = \frac{200 \times 10^3 \times 10}{0.1/100} = 2 \times 10^9$$

Young's modulus, $Y = \frac{3\eta}{2}$

We know that $Y = 2\eta(1 + \sigma)$

$$\therefore \frac{3\eta}{2} = 2\eta(1+\sigma)$$

$$\Rightarrow \sigma = -\frac{1}{4}$$

333 (b)

$$T = m (g + a_0) = 10 (10 + 2) = 120 N$$

$$\therefore \text{ Stress} = \frac{T}{A}$$

$$= \frac{120}{2 \times 10^{-4}} = 60 \times 10^{4} \text{ Nm}^{-2}$$

$$\therefore Y = \frac{\text{stress}}{4 \text{strain}}$$

$$\therefore Y = \frac{\text{stress}}{4 \text{strain}}$$

∴ strain =
$$\frac{\text{stress}}{Y}$$

= $\frac{60 \times 10^4}{2 \times 10^{11}}$ = 30 × 10⁻⁷ = 3 × 10⁻⁶

$$l = \frac{FL}{AY} = \frac{FL^2}{(AL)Y} = \frac{FL^2}{VY}$$

 $\therefore l \propto L^2$ if volume of the wire remains constant

$$\frac{l_2}{l_1} = \left(\frac{L_2}{L_1}\right)^2 = \left(\frac{8}{2}\right)^2 = 16$$

$$l = \frac{FL}{AY} \Rightarrow \frac{l_S}{l_{cu}} = \frac{Y_{cu}}{Y_S} [F, L \text{ and } Y \text{ are constant}]$$

$$\therefore \frac{l_S}{l_{cu}} = \frac{1.2 \times 10^{11}}{2 \times 10^{11}} = \frac{3}{5}$$

From Hooke's law, restoring force F is F =kl where k is spring constant. When L is original length of spring, and k the spring constant, then

$$L + \left(\frac{5}{k}\right) = k$$

$$L + \left(\frac{5}{k}\right) = b$$

Also
$$L + \left(\frac{4}{k}\right) = a$$

$$\therefore \frac{5}{k} - \frac{4}{k} = b - a$$

$$\implies k = \frac{1}{b-a}$$

$$\therefore L = b - \frac{5}{k}$$

$$\implies L = b - 5(b - a) = 5a - 4b$$

When tension is 9 N.

Length of spring =
$$L + \frac{9}{k}$$

Length of spring =
$$(5a - 4b) + 9(b - a)$$

Length of spring = 5b - 4a

337 (b)

Longitudinal strain $\frac{l}{L} = \frac{\text{stress}}{\gamma} = \frac{10^6}{10^{11}} = 10^{-5}$ Percentage increase in length = $10^{-5} \times 100 =$ 0.001%

338 (b)

Breaking force \propto Area of cross section of wire *i.e.* load hold by the wire does not depend upon the length of the wire

339 (b)

Change in pressure due to placing of mass on piston is,

$$\Delta p = \frac{Mg}{A}$$

From Bulk modulus definition

$$K = \frac{-dp}{\frac{dV}{V}}$$

$$\Rightarrow \left| \frac{dV}{V} \right| = \frac{\Delta p}{K} = \frac{Mg}{AK}$$

From
$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{V} = \frac{3dR}{R}$$

$$dR = 1 \text{ a}$$

$$\Rightarrow \frac{dR}{R} = \frac{1}{3} \frac{dV}{V}$$

$$=\frac{Mg}{3AK}$$

MECHANICAL PROPERTIES OF SOLIDS

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: Ductile metals are used to prepare thin wires.
- **Statement 2:** In the stress-strain curve of ductile metals, the length between the points representing elastic limit and breaking point is very small.

2

- Statement 1: Young's modulus for a perfectly plastic body is zero.
- **Statement 2:** For a perfectly plastic body, restoring force is zero.

3

- **Statement 1:** The stretching of a coil is determined by its shear modulus
- Statement 2: Shear modulus change only shape of a body keeping its dimensions unchanged

4

- **Statement 1:** The unit of stress is same as that of pressure.
- **Statement 2:** Stress has the same meaning as that pressure.

5

- **Statement 1:** The restoring force F and a stretched string for extension x is related to potential energy
 - Uas, $F = -\frac{dU}{dx}$
- **Statement 2:** F = -kx and $U = \frac{1}{2}kx^2$, where k is a spring constant for the given stretched string.

6

Statement 1: Spring balances show correct readings even after they had been used for a long time Statement 2: On using for long time, spring balances losses its elastic strength 7 Statement 1: Steel is more elastic than rubber Statement 2: Under given deforming force, steel is deformed less than rubber 8 Statement 1: A hollow shaft is found to be stronger than a solid shaft made of same material Statement 2: The torque required to produce a given twist in hollow cylinder is greater than that required to twist a solid cylinder of same size and material 9 Statement 1: Glassy solids have sharp melting point **Statement 2:** The bonds between the atoms of glassy solids get broken at the same temperature 10 Statement 1: Stress is the internal force per unit area of a body Statement 2: Rubber is less elastic than steel 11 **Statement 1:** A solid shaft is found to be stronger, than a hollow shaft of same material. Statement 2: The torque required to produce a given twist in solid cylinder is smaller than that required to twist a hollow cylinder of the same size and material. 12 **Statement 1:** Bulk modulus of elasticity (*K*) represents incompressibility of the material Statement 2: Bulk modulus of elasticity is proportional to change in pressure 13 Statement 1: Two identical springs of steel and copper are equally stretched. More work will be done on steel than copper. **Statement 2:** Steel is more elastic than copper. 14 Statement 1: Two identical solid balls, one of ivory and the other of wet-clay are dropped from the same height on the floor. Both the balls will rise to same height after bouncing **Statement 2:** Ivory and wet-clay have same elasticity 15 Statement 1: The bridges are declared unsafe after a long use. **Statement 2:** The bridges lose their elastic strength with time.

Statement 1: Force constant $k = \frac{YA}{l}$, where Y is Young's modulus, A is area and l is original length of the

given spring.

Statement 2: Force constant in the case of a given spring is called spring constant.

MECHANICAL PROPERTIES OF SOLIDS

: ANSWER KEY:

- a | 13) 4) 14) 15) 1) 2) 3) 16)
- 5) 6) 7) 8) d a a 10) 11) 12) 9) a

MECHANICAL PROPERTIES OF SOLIDS

: HINTS AND SOLUTIONS :

2 (a)

Young's modulus of a material, $Y = \frac{\text{stress}}{\text{strain}}$ Here Stress $= \frac{\text{Restoring force}}{\text{Area}}$ As restoring force is zero

 $\therefore Y = 0$

3 (a)

Because, the stretching of coil simply changes its shape without any change in the length of the wire used in coil. Due to which shear modulus of elasticity is involved

4 (a)

Stress = $\frac{\text{force}}{\text{area}}$ = pressure. Hence, both Assertion and Reason are true and Reason is the correct explanation of Assertion.

5 (a)

Here, both Assertion and Reason are true and Reason is the true explanation of Assertion.

6 (d)

When a spring balance has been used for a long time, the spring in the balance gets fatigued and there is loss of strength of the spring. In such a case, the extension in the spring is more for a given load and hence the balance gives wrong readings

7 (a)

Elasticity is a measure of tendency of the body to regain its original configuration. As steel is deformed less than rubber therefore steel is more elastic than rubber

9 (d)

In a glassy solid (i. e. amorphous solid) the various bonds between the atoms or ions or molecules of a solid are not equally strong. Different bonds are broken at different temperatures. Hence there is no sharp melting point for a glassy solid

10 **(b)**

Stress is defined as internal force (restoring force) per unit area of a body. Also, rubber is less elastic than steel, because restoring force is less for rubber than steel

11 (d

A hollow shaft is found to be stronger than solid shaft of the given size and material. Hence, Assertion-1 is false. Torque required to produce a given twist in hollow cylinder is greater than that required to twist a solid cylinder. Hence, Reason is true.

12 (a)

Bulk modulus of elasticity measures how good the body is to regain its original volume on being compressed. Therefore, it represents incompressibility of the material

 $K = \frac{-PV}{\Delta V}$ where *P* is increase in pressure, ΔV is change in volume

13 (a)

Work done in stretching a spring of spring constant k is $W = \frac{1}{2}kx^2$ or $W \propto$

k where x is constant.

Since, *k* for steel is more than for copper, hence more work will be done on steel than copper.

14 (d)

Ivory is more elastic than wet-day. Hence the ball of ivory will rise to a greater height. In fact the ball of wet-day will not rise at all, it will be somewhat flattened permanently

15 (a)

A bridge during its use undergoes alternating strains for a large number of times each day, depending upon the movement of vehicles on it when a bridge is used for long time, if losses its elastic strength. Due to which the amount strain

in the bridge for a given stress will become large and ultimately, the bridge may collapse. This may not happen's if the bridges are declared unsafe after long use.

16 **(b)**

Here, both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

As
$$k = \frac{F}{A} \frac{F}{\Delta l}$$
 and $Y = \frac{F}{A} \frac{l}{\Delta l}$ or $\frac{F}{\Delta l} = \frac{YA}{l} = k$

